[1] |
Pöeschel J, Trubowitz E. Inverse Spectral Theory. New York: Academic Press, 1987
|
[2] |
Dauge M, Hellfer B. Eigenvalues variation. I. Neumann problem for Sturm-Liouville operators. J Differ Equ, 1993, 104(2): 243-262
|
[3] |
Dauge M, Hellfer B. Eigenvalues variation. II. Multidimensional Problems. J Differ Equ, 1993, 104(2): 263-297
|
[4] |
Kong Q K, Zettl A. Eigenvalues of regular Strum-Liouville problems. J Differ Equ, 1996, 131: 1-19
|
[5] |
Kong Q K, Zettl A. Dependence of eigenvalues of Strum-Liouville problems on the boundary. J Differ Equ, 1996, 126: 389-407
|
[6] |
Suo J Q, Wang W Y. Eigenvalues of a class of regular fourth-order Sturm-Liouville problems. Appl Math Comput, 2012, 218(19): 9716-9729
|
[7] |
Ge S Q, Wang W Y, Suo J Q. Dependence of eigenvalues of a class of fourth-order Sturm-Liouville problemson the boundary. Appl Math Comput, 2013, 220: 268-276
|
[8] |
Kong Q K, Wu H Y, Zettl A. Dependence of eigenvalues on the problems. Math Nachr, 1997, 188: 173-201
|
[9] |
Zheng Z W, Ma Y J. Dependence of eigenvalues of 2$m$th-order spectral problems. Bound Value Probl, 2017, 2017(1): Article 126
|
[10] |
Yang Q X, Wang W Y, Gao X C, Rajendran S. Dependence of eigenvalues of a class of higher-order Sturm-Liouville problems on the boundary. Math Problems Eng, 2015, 2015: Article 686102
|
[11] |
Zhang M Z, Wang Y C. Dependence of eigenvalues of Sturm-Liouville problems with interface conditions. Appl Math Comput, 2015, 265: 31-39
|
[12] |
Wang A P, Zettl A. Eigenvalues of Sturm-Liouville problems with discontinuous boundary conditions. Electron J Differ Equ, 2017, 2017(127): 1-27
|
[13] |
Zhang M Z, Li K. Dependence of eigenvalues of Sturm-Liouville problems with eigenparameter dependent boundary conditions. Appl Math Comput, 2020, 378: 125214
|
[14] |
Zhang H Y, Ao J J, Li M L. Dependence of eigenvalues of Sturm-Liouville problems with eigenparameter-dependent boundary conditions and interface conditions. Mediterr J Math, 2022, 19(2): 1-17
|
[15] |
Bai Y L, Wang W Y, Li K, Zheng Z W. Eigenvalues of a class of eigenparameter dependent third-order differential operators. J Nonlinear Math Phy, 2022, 29(3): 447-492
|
[16] |
Zhang H Y, Ao J J, Mu D. Eigenvalues of discontinuous third-order boundary value problems with eigenparameter-dependent boundary conditions. J Math Anal Appl, 2022, 506(2): 125680
|
[17] |
Qin J F, Li K, Zheng Z W, Cai J M. Eigenvalues of fourth-order differential operators with eigenparameter dependent boundary condition. AIMS Math, 2022, 7(5): 9247-9260
|
[18] |
闫文文, 许美珍. 边界条件含有特征参数的四阶微分算子的自伴性和特征值的依赖性. 数学物理学报, 2022, 42A(3): 671-693
|
|
Yan W W, Xu M Z. The self-adjointness and dependence of eigenvalues of fourth-order differential operator with eigenparameters in the boundary conditions. Acta Math Sci, 2022, 42A(3): 671-693
|
[19] |
Carlson R. Hearing point masses in a string. Siam J Math Anal, 1995, 26: 583-600
|
[20] |
Akdogan Z, Demirci M, Mukhtarov Sh O. Green function of discontinuous boundary-value problem with transmission conditions. Math Meth Appl Sci, 2007, 30: 1719-1738
|
[21] |
Erdogan S. A class of second-order differential operators with eigenparameter-dependent boundary and transmission conditions. Math Meth Appl Sci, 2014, 37(18): 2952-2961
|
[22] |
郭永霞. 常型 Sturm-Liouville 算子的逆谱问题. 陕西: 陕西师范大学, 2015: 63-80
|
|
Guo Y X. Inverse spectral problem of regular Sturm-Liouville operator. Shanxi: Shanxi Normal University, 2015: 63-80
|
[23] |
Wei Z, Wei G. Inverse spectral problem for non-selfadjoint Dirac operator with boundary and jump conditions dependent on the spectral parameter. J Comput Appl Math, 2016, 308: 199-214
|
[24] |
Aydemir K, Mukhtarov O. A class of Sturm-Liouville problems with eigenparameter dependent transmission conditions. Numer Func Anal Opt, 2017, 38(10): 1260-1275
|
[25] |
Zettl A. Sturm-Liouville Theory. New York: Amer Math Soc, 2005
|
[26] |
Dieudonné J. Foundations of Modern Analysis. New York: Academic Press, 1969
|