Acta mathematica scientia,Series A ›› 2024, Vol. 44 ›› Issue (3): 595-608.
Previous Articles Next Articles
Received:
2023-08-16
Revised:
2024-01-02
Online:
2024-06-26
Published:
2024-05-17
Supported by:
CLC Number:
Wang Weimin, Yan Wei. Convergence Problem and Dispersive Blow-up for the Modified Kawahara Equation[J].Acta mathematica scientia,Series A, 2024, 44(3): 595-608.
[1] | Benjamin T B, Bona J L, Mahony J J. Model equations for long waves in nonlinear dispersive systems. Philos Trans Roy Soc London Ser A, 1972, 272: 47-78 |
[2] | Bona J L, Ponce G, Saut J C, Sparber C. Dispersive blow-up for nonlinear Schr¨odinger equations revisited. J Math Pures Appl, 2014, 102: 782-811 |
[3] | Bona J L, Saut J C. Dispersive blow-up of solutions of generalized KdV equations. J Differ Equ, 1993, 103: 3-57 |
[4] | Bona J L, Saut J C. Dispersive blow-up II. Schrödinger equations, optical and oceanic rogue waves. Chin Ann Math Ser B, 2010, 31: 793-818 |
[5] | Bourgain J. Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. Geom Funct Anal, 1993, 3(2): 107-156 |
[6] | Carleson L. Some analytical problems related to statistical mechanics//Benedetto J J. Euclidean Harmonic Analysis. Heidelberg: Springer, 1980, 779: 5-45 |
[7] | Chen W G, Li J F, Miao C X, Wu J X. Low regularity solutions of two fifth-order KdV type equations. J Anal Math, 2009, 107: 221-238 |
[8] | Compaan E. A smoothing estimate for the nonlinear Schrödinger equation. UIUC research experience for graduate students, August 2013 |
[9] | Compaan E, Lucà R, Staffilani G. Pointwise convergence of the Schrödinger flow. Int Math Res Not 2021, 2021(1): 599-650 |
[10] | Cui S B, Tao S P. Strichartz estimates for dispersive equations and solvability of the Kawahara equation. J Math Anal Appl, 2005, 304: 683-702 |
[11] |
Du X M, Zhang R X. Sharp ![]() ![]() |
[12] | Gel’fand I M, Shilov G E. Generalized Functions, volume 1, Properties and Operations. New York: academic press, 1964, |
[13] | Grafakos L. Modern Fourier Analysis. New York: Springer, 2009 |
[14] | Jia Y L, Huo Z H. Well-posedness for the fifth-order shallow water equations. J Diff Eqns, 2009, 246: 2448-2467 |
[15] | Kawahara T. Oscillatory solitary waves in dispersive media. J Phys Soc Japan, 1972, 33: 260-264 |
[16] | Kenig C E, Ruiz A, Sogge C D. Uniform Sobolev inequalities and unique continuation differential operators. Duke Math, 1987, 55: 329-347 |
[17] | Linares F, Pastor A, Drumond Silva J. Dispersive blow-up for solutions the Zakharov-Kuznetsov equation. Annales de l’Institut Henri Poincar´e C. Analyse non linèaire, 2021, 38: 281-300 |
[18] | Linares F, Ramos J P G. Maximal function estimates and local well-posedness for the generalized Zakharov- Kuznetsov equation. SIAM J Math Anal, 2021, 53: 914-936 |
[19] | Tao S P, Cui S B. Local and global existence of solutions to initial value problems of modified nonlinear Kawahara equation. Acta Math Sin Engl Ser, 2005, 21: 1035-1044 |
[20] | Yan W, Li Y S. The Cauchy problem for Kawahara equation in Sobolev spaces with low regularity. Math Meth Appl Sci, 2010, 33: 1647-1660 |
[21] | Yan W, Li Y S. Ill-posedness of modified Kawahara equation and Kaup-Kupershmidt equation. Acta Math Sci, 2012, 32B: 710-716 |
[22] | Yan W, Li Y S, Yang X Y. The Cauchy problem for the modified Kawahara equation in Sobolev spaces with low regularity. Math Comput Modelling, 2011, 54: 1252-1261 |
[23] | Yan W, Wang W M, Yan X Q. Convergence problem of the Kawahara equation on the real line. J Math Anal Appl, 2022, 55: 126386 |
[24] | Yan W, Yan X Q, Duan J Q, Huang J H. The Cauchy problem for the generalized KdV equation with rough data and random data. arXiv: 2011.07128 |
[25] | Zhang Y T, Yan W, Yan X Q, Zhao Y J. Convergence problem of Schr¨odinger equation and wave equation in low regularity spaces. J Math Anal Appl, 2023, 522: 126921 |
[1] | Liu Jinghua, Li Lin. Homeomorphic Solutions of Iterative Functional Equations [J]. Acta mathematica scientia,Series A, 2024, 44(2): 313-325. |
[2] | YANG Yu-Bo, ZHU Peng, YIN Yun-Hui. A Optimal Uniformly Convergent Discontinuous Galerkin Finite Element Method for Singularly Perturbed Problem [J]. Acta mathematica scientia,Series A, 2014, 34(3): 716-726. |
[3] | YANG Zheng, JI Yuan-Yuan, MA He-Ping. Uniform Convergence of the Fourier Spectral Method for the Zakharov Equations [J]. Acta mathematica scientia,Series A, 2013, 33(3): 409-423. |
[4] | YUN Dong-Fang, HUANG Shu-Xiang. On a Class of Singular Equations with Nonlinear Terms Depending on the Gradient [J]. Acta mathematica scientia,Series A, 2012, 32(5): 861-878. |
[5] | TU Tian-Liang, MO Jiong. Interpolatory Approximation to Harmonic Function with Boundary Data [J]. Acta mathematica scientia,Series A, 2010, 30(2): 397-404. |
[6] | Peng Zhigang. The Properties of Several Classes of Analytic Functions with Missing Coefficients [J]. Acta mathematica scientia,Series A, 2008, 28(4): 661-669. |
[7] | BANG Zhi-Gang, SU Feng-. Extreme Points and Support Points of a Family of Analytic Func tions [J]. Acta mathematica scientia,Series A, 2005, 25(3): 345-348. |
[8] | Zhu Zhongyi, Wei Bocheng. Strong Uniform Convergence Rates for Nonparametric Estimations of Conditional Functional and its Derivatives [J]. Acta mathematica scientia,Series A, 1998, 18(4): 394-401. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||
Full text 89
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Abstract 49
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||
Discussed |
|