Acta mathematica scientia,Series A ›› 2024, Vol. 44 ›› Issue (2): 429-452.
Previous Articles Next Articles
Received:
2022-05-12
Revised:
2023-10-07
Online:
2024-04-26
Published:
2024-04-07
Supported by:
CLC Number:
Wang Xuan, Yuan Haiyan. Attractors for the Nonclassical Diffusion Equation with Time-Dependent Memory Kernel[J].Acta mathematica scientia,Series A, 2024, 44(2): 429-452.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] |
Aifantis E C. On the problem of diffusion in solids. Acta Mech, 1980, 37(3): 265-296
doi: 10.1007/BF01202949 |
[2] | Lions J L, Magenes E. Non-Homogen-homogeneous Boundary Value Problems and Applications. Berlin: Springer-Verlag, 1972 |
[3] | Chen P J, Gurtin M E. On a theory of heat condition involving two temperatures. Z Ange Math Phys, 1968, 19(4): 614-627 |
[4] |
Wang S Y, Li D S, Zhong C K. On the dynamics of a class of nonclassical parabolic equations. J Math Anal Appl, 2006, 317(2): 565-582
doi: 10.1016/j.jmaa.2005.06.094 |
[5] | Sun C Y, Yang M H. Dynamics of the nonclassical diffusion equation. Asymptot Anal, 2008, 59(1): 51-81 |
[6] | Wu H Q, Zhang Z Y. Asymptotic regularity for the nonclassical diffusion equation with lower regular foring term. Dyna Syst, 2011, 26(4): 391-400 |
[7] |
Wang X, Yang L, Zhong C K. Attractors for the nonclassical diffusion equations with fading memory. J Math Anal Appl, 2010, 362(2): 327-337
doi: 10.1016/j.jmaa.2009.09.029 |
[8] |
Zhang Y B, Wang X, Gao C H. Strong global attractors for nonclassical diffusion equation with fading memory. Adv Difference Equ, 2017, 2017(1): 1-14
doi: 10.1186/s13662-016-1057-2 |
[9] |
Xiao Y L. Attractors for a nonclassical diffusion equation. Acta Math Appl Sin, 2002, 18(2): 273-276
doi: 10.1007/s102550200026 |
[10] |
Wang Y H, Wang L Z. Trajectory attractors for nonclassical diffusion equations with fading memory. Acta Math Sci, 2013, 33(3): 721-737
doi: 10.1016/S0252-9602(13)60033-8 |
[11] |
Conti M, Pata V, Temam R. Attractors for the processes on time-dependent spaces. Applications to wave equations. J Differential Equations, 2013, 255(6): 1254-1277
doi: 10.1016/j.jde.2013.05.013 |
[12] |
Conti M, Danese V, Giorgi C, et al. A model of viscoelasticity with time-dependent memory kernels. Amer J Math, 2016, 140(2): 349-389
doi: 10.1353/ajm.2018.0008 |
[13] |
Dafermos C M. Asymptotic stability in viscoelasticity. Arch Rational Mech Anal, 1970, 37(4): 297-308
doi: 10.1007/BF00251609 |
[14] |
Pata V, Squassina M. On the strongly damped wave equation. Comm Math Phys, 2005, 253(3): 511-533
doi: 10.1007/s00220-004-1233-1 |
[15] | Grasselli M, Pata V. Uniform attractors of nonautonomous dynamical systems with memory//Lorenzi A, Ruf B. Evlution Equation, Semigroups and Functional Analysis. Basel: Birkhäuser, 2002: 155-178 |
[16] |
Simon J. Compact sets in the space $L^p(0,T;B)$. Ann Mat Pura Appl, 1987, 146(1): 65-96
doi: 10.1007/BF01762360 |
[17] |
Conti M, Danese V, Pata V. Viscoelasticity with time-dependent memory kernels, Part Ⅱ: Asymptotic behavior of solutions. Amer J Math, 2018, 140(6): 1687-1729
doi: 10.1353/ajm.2018.0049 |
[18] | Borini S, Pata V. Uniform attractors for a strongly damped wave equation with linear memory. Asymptot Anal, 1999, 20(3): 263-277 |
[19] | Zelik S. Asymptotic regularity of solutions of a nonautonomous damped wave equation with a critical growth exponent. Commun Pure Appl Anal, 2004, 3(4): 921-934 |
[20] | Yang L, Wang X. Existence of attractors for the non-autonomous berger equation with nonlinear damping. Electronic J Differential Equations, 2017, 2017(278): 1-14 |
[21] |
Meng F J, Wu J, Zhao C X. Time-dependent global attractor for extensible Berger equation. J Math Anal Appl, 2019, 469(2): 1045-1069
doi: 10.1016/j.jmaa.2018.09.050 |
[22] | Conti M, Pata V. Asymptotic structure of the attractor for processes on time-dependent spaces. Nonlinear Anal: Real World Appl, 2014, 19: 1-10 |
[1] | Zhang Xin, Wu Xinglong. The Initial Value Problem for a Modified Camassa-Holm Equation with Cubic Nonlinearity [J]. Acta mathematica scientia,Series A, 2024, 44(2): 376-383. |
[2] | Liu Guowei, Wang Qiling. The Well-posedness of a Delayed Non-Newtonian Fluid on ${2D}$ Unbounded Domains [J]. Acta mathematica scientia,Series A, 2023, 43(6): 1789-1802. |
[3] | Cai Senlin,Zhou Shouming,Chen Rong. On the Cauchy Problem for a Shallow Water Regime of Waves with Large Amplitude [J]. Acta mathematica scientia,Series A, 2023, 43(4): 1197-1120. |
[4] | Zeng Jing,Peng Jiayu. Essential Stability and Hadamard Well-Posedness of Excess Demand Equilibrium Problems [J]. Acta mathematica scientia,Series A, 2023, 43(3): 930-938. |
[5] | Lin Jie, Wang Tianyi. Well-Posedness and Convergence Rates of Three-Dimensional Incompressible Euler Flows in Axisymmetric Nozzles with Symmetric Body [J]. Acta mathematica scientia,Series A, 2023, 43(1): 219-237. |
[6] | Xiangyu Xiao,Zhilin Pu. The Global Attractors of Cahn-Hilliard-Brinkman System [J]. Acta mathematica scientia,Series A, 2022, 42(4): 1027-1040. |
[7] | Baishun Lai,Qing Luo. Well-Posedness of a Fourth Order Parabolic Equation Modeling MEMS [J]. Acta mathematica scientia,Series A, 2021, 41(6): 1718-1733. |
[8] | Dandan Sun,Yingke Li,Zhidong Teng,Tailei Zhang. Analysis of the Stability for Measles Epidemic Model with Age-Structured [J]. Acta mathematica scientia,Series A, 2021, 41(6): 1950-1968. |
[9] | Xuanxuan Xi,Mimi Hou,Xianfeng Zhou. Invariance Sets and Well-Posedness for the Weak Solution of Non-Autonomous Caputo Fractional Evolution Equation [J]. Acta mathematica scientia,Series A, 2021, 41(1): 149-165. |
[10] | Xuan Wang, Ying Han, Chenghua Gao. Global Attractor in H1(Rn) x Lu2(R+;H1(Rn)) for the Nonclassical Diffusion Equations with Fading Memory [J]. Acta mathematica scientia,Series A, 2018, 38(6): 1205-1223. |
[11] | Cai Gang. The Well-Posedness of Degenerate Differential Equations with Finite Delay in Banach Spaces [J]. Acta mathematica scientia,Series A, 2018, 38(2): 264-275. |
[12] | Li Dingshi, Fan Yingfei. Random Attractors for the Stochastic Nonclassical Diffusion Equation on Unbounded Domains [J]. Acta mathematica scientia,Series A, 2017, 37(1): 158-172. |
[13] | Wang Yonghai, Qin Yuming. Upper Semicontinuity of Pullback Attractors for Nonclassical Diffusion Equations in H01(Ω) [J]. Acta mathematica scientia,Series A, 2016, 36(5): 946-957. |
[14] | Marko Kostić, Li Chenggang, Li Miao. Abstract Multi-Term Fractional Differential Equations with Riemann-Liouville Derivatives [J]. Acta mathematica scientia,Series A, 2016, 36(4): 601-622. |
[15] | Ma Qiaozhen, Xu Ling, Zhang Yanjun. Asymptotic Behavior of the Solution for the Nonclassical Diffusion Equations with Fading Memory on the Whole Space R3 [J]. Acta mathematica scientia,Series A, 2016, 36(1): 36-48. |
|