Acta mathematica scientia,Series A ›› 2024, Vol. 44 ›› Issue (1): 80-92.
Previous Articles Next Articles
Wang Zhenguo1,*(),Ding Lianye2
Received:
2022-10-26
Revised:
2023-08-28
Online:
2024-02-26
Published:
2024-01-10
Supported by:
CLC Number:
Wang Zhenguo, Ding Lianye. Multiple Homoclinic Solutions for the Kirchhoff-type Difference Equations with Unbounded Potential[J].Acta mathematica scientia,Series A, 2024, 44(1): 80-92.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] | Kelly W G, Peterson A C. Difference Equations:An Introduction with Applications. San Diego: Academic Press, 1991 |
[2] | Agarwal R P. Equations and Inequalities. Theory, Methods, and Applications. New York-Basel: Marcel Dekker, Inc, 2000 |
[3] | Long Y H, Wang L. Global dynamics of a delayed two-patch discrete SIR disease model. Commun Nonlinear Sci Numer Simul, 2020, 83: 105117 |
[4] | 陈密, 聂昌伟, 刘海燕. 一类离散相依索赔风险模型的随机分红问题. 数学物理学报, 2022, 42A(2): 631-640 |
Chen M, Nie C W, Liu H Y. Randomized Dividends in a Discrete Risk Model with Time-Correlated Claims. Acta Math Sci, 2022, 42A(2): 631-640 | |
[5] | Zheng B, Yu J S. Existence and uniqueness of periodic orbits in a discrete model on Wolbachia infection frequency. Adv Nonlinear Anal, 2022, 11: 212-224 |
[6] |
Guo Z M, Yu J S. Existence of periodic and subharmonic solutions for second-order superlinear difference equations. Sci China Ser A, 2003, 46(4): 506-515
doi: 10.1360/03ys9051 |
[7] |
Bereanu C, Mawhin J. Boundary value problems for second-order nonlinear difference equations with discrete$\phi$-Laplacian and singular$\phi$. J Difference Equ Appl, 2008, 14: 1099-1118
doi: 10.1080/10236190802332290 |
[8] | Zhang X S, Wang D. Multiple periodic solutions for difference equations with double resonance at infinity. Adv Difference Equ, 2011, 2011: 806458 |
[9] | Lin G H, Zhou Z. Homoclinic solutions of discrete$\phi$-Laplacian equations with mixed nonlinearities. Commun Pure Appl Anal, 2018, 17(5): 1723-1747 |
[10] |
Zhou Z. Ling J X. Infinitely many positive solutions for a discrete two point nonlinear boundary value problem with$\phi_{c}$-Laplacian. Appl Math Lett, 2019, 91: 28-34
doi: 10.1016/j.aml.2018.11.016 |
[11] |
Lin G H, Zhou Z, Yu J S. Ground state solutions of discrete asymptotically linear Schrödinge equations with bounded and non-periodic potentials. J Dynam Differential Equations, 2020, 32(2): 527-555
doi: 10.1007/s10884-019-09743-4 |
[12] | 王振国. 依赖参数的$2n$阶差分方程边值问题多个非平凡解的存在性. 数学物理学报, 2022, 42A(3): 760-766 |
Wang Z G. Existence and multiplicity of solutions for a$2n$th-order discrete boundary value problems with a parameter. Acta Math Sci, 2022, 42A(3): 760-766 | |
[13] | Cabada A, Li C Y, Tersian S. On homoclinic solutions of a semilinear$p$-Laplacian difference equation with periodic coefficients. Adv Difference Equ, 2010, 2010: 195376 |
[14] |
Iannizzotto A, Tersian S. Multiple homoclinic solutions for the discrete$p$-Laplacian via critical point theory. J Math Anal Appl, 2013, 403(1): 173-182
doi: 10.1016/j.jmaa.2013.02.011 |
[15] | Kong L J. Homoclinic solutions for a second order difference equation with$p$-Laplacian. Appl Math Comput, 2014, 247: 1113-1121 |
[16] | Mei P, Zhou Z. Homoclinic solutions of discrete prescribed mean curvature equations with mixed nonlinearities. Appl Math Lett, 2022, 130: 108006 |
[17] | Alves C O, Corrêa F J S A, Ma T F. Positive solutions for a quasilinear elliptic equation of Kirchhoff type. Comput Math Appl, 2005, 49: 85-93 |
[18] | Zhang J, Tang X H, Zhang W. Existence of multiple solutions of Kirchhoff type equation with sign-changing potential. Appl Math Comput, 2014, 242: 491-499 |
[19] |
Chen S T, Tang X H. Infinitely many solutions for super-quadratic Kirchhoff-type equations with sign-changing potential. Appl Math Lett, 2016, 67: 40-45
doi: 10.1016/j.aml.2016.12.003 |
[20] |
Wu X. Existence of nontrivial solutions and high energy solutions for Schrödinger-Kirchhoff-type equations in$\mathbb{R}^{n}$. Nonlinear Anal Real World Appl, 2011, 12: 1278-1287
doi: 10.1016/j.nonrwa.2010.09.023 |
[21] | Long Y H. Multiple results on nontrivial solutions of discrete Kirchhoff type problems. J Appl Math Comput, 2022, 2022: 1-17 |
[22] | Long Y H, Deng X Q. Existence and multiplicity solutions for discrete Kirchhoff type problems. Appl Math Lett, 2022, 126: 107817 |
[23] | Long Y H. Nontrivial solutions of discrete Kirchhoff type problems via Morse theory. Adv Nonlinear Anal, 2022, 11: 1352-1364 |
[24] | Chakrone O, Hssini E M, Rahmani M, Darhouche O. Multiplicity results for a$p$-Laplacian discrete problems of Kirchhoff type. Appl Math Comput, 2016, 276: 310-315 |
[25] |
Heidarkhani S, Afrouzi G, Henderson J, et al. Variational approaches to$p$-Laplacian discrete problems of Kirchhoff-type. J Difference Equ Appl, 2017, 23(5): 917-938
doi: 10.1080/10236198.2017.1306061 |
[26] | Averna D, Bonanno G. A three critical points theorem and its applications to the ordinary Dirichlet problem. Topol Methods Nonlinear Anal, 2003, 22: 93-103 |
|