Acta mathematica scientia,Series A ›› 2024, Vol. 44 ›› Issue (1): 60-79.

Previous Articles     Next Articles

Multiplicity of Positive Solutions to Subcritical Choquard Equation

Wen Ruijiang1(),Liu Fanqin2(),Xu Ziyi3,*()   

  1. 1. School of Mathematics and Statistics, Jiangxi Normal University, Nanchang 330022
    2. School of Mathematical Sciences, Capital Normal University, Beijing 100048
    3. School of Mathematics and Statistics, Lanzhou University, Lanzhou 730000
  • Received:2022-09-20 Revised:2023-10-16 Online:2024-02-26 Published:2024-01-10

Abstract:

In this paper, we are concerned with the multiplicity of solutions for the following subcritical Choquard equation

$\begin{equation*} \begin{cases} -{\Delta}{u}+(\lambda V(x)+1)u=\Big(\int_{\mathbb{R}^N}\frac{|u(y)|^{p_{\varepsilon}}}{|x-y|^\mu}{\rm d}y\Big)|u|^{p_{\varepsilon}-2}u,\quad x\in\mathbb{R}^N,\\{u\in{{H}}^{1}{(\mathbb{R}^N)}}, \end{cases}\end{equation*}$

where$N>3$,$\lambda$is a real parameter,$p_{\varepsilon}=2^\ast_{\mu}-\varepsilon$,$\varepsilon>0$,$\mu\in(0,N)$and$2^\ast_{\mu}=\frac{2N-\mu}{N-2}$is the critical Hardy-Littlewood-Sobolev exponent. Suppose that$\Omega:={\rm int}\,V^{-1}(0)$is a nonempty bounded domain in$\mathbb{R}^N$with smooth boundary, using Lusternik-Schnirelman theory, we prove the problem (0.1) has at least$cat_\Omega(\Omega)$positive solutions for$\lambda$large and$\varepsilon$small enough.

Key words: Subcritical Choquard equation, Lusternik-Schnirelman theory, Multiplicity of solutions

CLC Number: 

  • O175.25
Trendmd