Acta mathematica scientia,Series A ›› 2024, Vol. 44 ›› Issue (1): 209-226.
Previous Articles Next Articles
Received:
2022-11-07
Revised:
2023-10-07
Online:
2024-02-26
Published:
2024-01-10
Supported by:
CLC Number:
Wu Peng, He Zerong. Spatio-temporal Dynamics of HIV Infection Model with Periodic Antiviral Therapy and Nonlocal Infection[J].Acta mathematica scientia,Series A, 2024, 44(1): 209-226.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] |
Vaidya N K, Rong L. Modeling pharmacodynamics on HIV latent infection: Choice of drugs is key to successful cure via early therapy. SIAM J Appl Math, 2017, 77: 1781-1804
doi: 10.1137/16M1092003 |
[2] |
Wu P, Zhao H. Dynamics of an HIV infection model with two infection routes and evolutionary competition between two viral strains. Appl Math Model, 2020, 84: 240-264
doi: 10.1016/j.apm.2020.03.040 |
[3] |
Rong L, Feng Z, Perelson A S. Mathematical analysis of age-structured HIV-1 dynamics with combination antiretroviral therapy. SIAM J Appl Math, 2007, 67: 731-756
doi: 10.1137/060663945 |
[4] |
Wang X, Song X, Tang S, Rong L. Dynamics of an HIV model with multiple infection stages and treatment with different drugs classes. Bull Math Biol, 2016, 78: 322-349
doi: 10.1007/s11538-016-0145-5 |
[5] | 邓萌, 徐瑞. 一类具有 CTL 免疫反应和免疫损害的 HIV 感染动力学模型的稳定性分析. 数学物理学报, 2022, 42A(5): 1592-1600 |
Deng M, Xu R. MenStability analysis of an HIV infection dynamic model wit CTL immune response and immune impairment. Acta Math Sci, 2022, 42A(5): 1592-1600 | |
[6] | 娄洁, 马之恩, 邵一鸣. HIV-1 的表型间变异与免疫因子相互作用的动力学模型. 数学物理学报, 2007, 27A(5): 898-906 |
Lou J, Ma Z, Shao M. Modelling the interactions between the HIV-1 phenotypes and the cytokines. Acta Math Sci, 2007, 42A(5): 1592-1600 | |
[7] |
Ren X, Tian Y, Liu L, Liu X. A reaction-diffusion within-host HIV model with cell-to-cell transmission. J Math Biol, 2018, 76: 1831-1872
doi: 10.1007/s00285-017-1202-x pmid: 29305736 |
[8] |
Wu P, Zhao H. Dynamical analysis of a nonlocal delayed and diffusive HIV latent infection model with spatial heterogeneity. J Franklin Institute, 2021, 358: 5552-5587
doi: 10.1016/j.jfranklin.2021.05.014 |
[9] | 吴鹏, 赵洪涌. 基于空间异质反应扩散 HIV 感染模型的最优治疗策略. 应用数学学报, 2022, 45(5): 752-766 |
Wu P, Zhao H. Optimal treatment strategies for a reaction-dffusion HIV infection model with spatial heterogeneity. Acta Math Appl Sinica, 2022, 45(5): 752-766 | |
[10] | 王良平. 强一致收敛下的初值敏感性与等度连续性. 浙江大学学报(理学版), 2012, 39(3): 270-272 |
Wang L. The snsitive dependence on initial conditions and the equicontinuit under strongly uniform convergence. J Zhejiang Univ (Scicence Edition), 2012, 39(3): 270-272 | |
[11] | Wang W, Wang X, Feng Z. Time periodic reaction-diffusion equations for modeling 2-LTR dynamics in HIV-infected patients. Nonlinear Anal RWA, 2021, 57: 103184 |
[12] | Wu P, Zheng S, He Z. Evolution dynamics of a time-delayed reaction-diffusion HIV latent infection model with two strains and periodic therapies. Nonlinear Anal RWA, 2022, 67: 103559 |
[13] | World Health Organization, 10 facts about HIV/AIDS fact sheet No. 204 updated July 2018. Available from: http://www.who.int/news-room/facts-in-pictures/detail/hiv-aids . [2022-11-01] |
[14] |
Fang H, Stone E, Piacenti F. Tenofovir disoproxil fumarate: A nucleotide reverse transcriptase inhibitor for the treatment of HIV infection. Clin Ther, 2002, 24: 1515-1548
pmid: 12462284 |
[15] | Shirakawa K, Chavez L, Hakre S, et al. Reactivation of latent HIV by histone deacetylase inhibitors. Trends Microbio, 2013, 21(6): 277-285 |
[16] |
Rasmussen T, Schmeltz S, Brinkmann C, et al. Comparison of HDAC inhibitors in clinical development: Effect on HIV production in latently infected cells and T-cell activation. Hum Vaccin Immunother, 2013, 9(5): 993-1001
doi: 10.4161/hv.23800 |
[17] | 谢强军, 张光新, 周泽魁. 一类周期反应扩散方程正周期解的存在性. 数学物理学报, 2009, 29A(2): 465-474 |
Xie Q J, Zhang G X, Zhou Z K. The existece of positive periodic solutions for a kind of periodic reaction-diffusion equations. Acta Math Sci, 2009, 29A(2): 465-474 | |
[18] | Levy J A. HIV and the Pathogenesis of AIDS. Washington, DC: ASM Press, 2007 |
[19] |
De Mottoni P, Orlandi E, Tesei A. Asymptotic behavior for a system describing epidemics with migration and spatial spread of infection. Nonlinear Anal, 1979, 3(5): 663-675
doi: 10.1016/0362-546X(79)90095-6 |
[20] | Pazy A. Semigroups of Linear Operators and Application to Partial Differential Equations. New York: Springer-Verlag, 1983 |
[21] | Yang J, Xu R, Sun H. Dynamics of a seasonal brucellosis diseaase model with nonlocal transmission and spatial diffusion. Commun Nonlinear Sci Numeri Simult, 2021, 94: 105551 |
[22] | Martin R H, Smith H L. Abstract functional dierential equations and reaction-diffusion systems. Trans Amer Math Soc, 1990, 321: 1-44 |
[23] |
Zhang L, Wang Z C, Zhao X Q. Threshold dynamics of a time periodic reaction-diffusion epidemic model with latent period. J Differ Equat, 2015, 258: 3011-3036
doi: 10.1016/j.jde.2014.12.032 |
[24] | 《数学辞海》总编辑委员会. 《数学辞海》第3卷. 南京: 东南大学出版社, 2002 |
Mathematical Dictionary Editoral Committe. Mathematical Dictionary Volume iii. Nanjing: Southeast University Press, 2002 | |
[25] | Krein M G, Rutman M A. Linear operators leaving invariant a cone in a Banach space. Uspehi Matem Nauk (NS), 1948, 23: 3-95 |
[26] |
Liu Z Z, When S Z, Wang H, Jin Z. Analysis of a local diffusive model with seasonality and nonlocal incidence of infection. SIAM J Appl Math, 2019, 79: 2218-2241
doi: 10.1137/18M1231493 |
[27] |
Peng R, Zhao X Q. A reaction-diffusion SIS epidemic model in a time-periodic environment. Nonlinearity, 2012, 25: 1451-1471
doi: 10.1088/0951-7715/25/5/1451 |
[28] | Zhao X Q. Uniform persistence and periodic coexistence states in infnite-dimension periodic semiflows with applications. Canad Appl Math Quart, 1995, 3: 473-495 |
[29] |
Magal P, Zhao X Q. Global attractors and steady states for uniformly persistent dynamical systems. SIAM J Math Anal, 2005, 37: 251-275
doi: 10.1137/S0036141003439173 |
[30] | Zhao X Q. Dynamical Systems in Population Biology. Switzerland: Springer, 2003 |
[31] |
Wu P, Wang X, Wang H. Threshold dynamics of nonlocal dispersal HIV/AIDS epidemic model with spatial heterogeneity and antiretroviral therapy. Commun Nonlinear Sci Numer Simulat, 2022, 115: 106728
doi: 10.1016/j.cnsns.2022.106728 |
[1] | Wu Peng,Wang Xiunan,He Zerong. Dynamical Analysis of an Age-Space Structured HIV/AIDS Model with Homogeneous Dirichlet Boundary Condition [J]. Acta mathematica scientia,Series A, 2023, 43(3): 970-984. |
[2] | Zhenxiang Hu,Linfei Nie. Analysis of a Reaction-Diffusion Epidemic Model with Horizontal Transmission and Environmental Transmission [J]. Acta mathematica scientia,Series A, 2022, 42(6): 1849-1860. |
[3] | Meng Deng,Rui Xu. Stability Analysis of an HIV Infection Dynamic Model with CTL Immune Response and Immune Impairment [J]. Acta mathematica scientia,Series A, 2022, 42(5): 1592-1600. |
[4] | Tailei Zhang,Junli Liu,Mengjie Han. Dynamics of an Anthrax Epidemiological Model with Time Delay and Seasonality [J]. Acta mathematica scientia,Series A, 2022, 42(3): 851-866. |
[5] | Yu Yang. Global Attractivity of a Nonlocal Delayed and Diffusive SVIR Model [J]. Acta mathematica scientia,Series A, 2021, 41(6): 1864-1870. |
[6] | Xianglin Han,Weigang Wang,Jiaqi Mo. Bionomics Dynamic System for Epidemic Virus Transmission [J]. Acta mathematica scientia,Series A, 2019, 39(1): 200-208. |
[7] |
Lou J; Ma Zhien ;Shao Yiming.
Modeling the Interactions between the HIV-1 Phenotypes and the Cytokines |
|