| [1] | Ben-Tal A, Nemirovski A. Robust optimization-methodology and applications. Math Program, 2002, 92: 453-480 | | [2] | Ben-Tal A, EI Ghaoui L, Nemirovski A. Robust Optimization. Princeton: Princeton university press, 2009. | | [3] | Goberna M A, Jeyakumar V, Li G, López M A. Robust linear semi-infinite programming duality under uncertainty. Math Program, 2013, 139: 185-203 | | [4] | Sun X, Tang L, Zeng J. Characterizations of approximate duality and saddle point theorems for nonsmooth robust vector optimization. Numer Funct Anal Optim, 2020, 41: 462-482 | | [5] | 叶冬平, 方东辉. 鲁棒复合优化问题的 Lagrange 对偶. 数学物理学报, 2020, 40A(4): 1095-1107 | | [5] | Ye D P, Fang D H. Lagrange duality of robust composite optimization problems. Acta Math Sci, 2020, 40A(4): 1095-1107 | | [6] | Ben-Tal A, Goryashko A, Guslitzer E, Nemirovski A. Adjustable robust solutions of uncertain linear programs. Math Program, 2004, 99: 351-376 | | [7] | Delage E, Iancu D A. Robust multistage decision making. Informs Tutor Oper Res, 2015, 2: 20-46 | | [8] | Ruiter F, Ben-Tal A, Brekelmans R, Hertog D. Robust optimization of uncertain multistage inventory systems with inexact data in decision rules. Comput Manag Sci, 2017, 14: 45-66 | | [9] | Zhen J, Hertog D D, Sim M. Adjustable robust optimization via Fourier-Motzkin elimination. Oper Res, 2018, 66: 1086-1100 | | [10] | Jeyakumar V, Li G, Woolnough D. Quadratically adjustable robust linear optimization with inexact data via generalized S-lemma: Exact second-order cone program reformulations. EURO J Comput Optim, 2021, 9: 100019 | | [11] | Chuong T D, Jeyakumar V, Li G, Woolnough D. Exact SDP reformulations of adjustable robust linear programs with box uncertainties under separable quadratic decision rules via SOS representations of non-negativity. J Global Optim, 2021, 81: 1095-1117 | | [12] | Woolnough D, Jeyakumar V, Li G. Exact conic programming reformulations of two-stage adjustable robust linear programs with new quadratic decision rules. Optim Lett, 2021, 15: 25-44 | | [13] | Chuong T D, Jeyakumar V. Adjustable robust multiobjective linear optimization: Pareto optimal solutions via conic programming. Ann Oper Res, 2022. https://doi.org/10.1007/s10479-022-05104-5 | | [14] | Chuong T D, Jeyakumar V, Li G, Woolnough D. Exact dual semi-definite programs for affinely adjustable robust SOS-convex polynomial optimization problems. Optimization, 2022, 71: 3539-3569 | | [15] | de Ruiter F J C T, Zhen J, den Hertog D. Dual approach for two-stage robust nonlinear optimization. Oper Res, 2023, 71: 1794-1799 | | [16] | Ramana M, Goldman A J. Some geometric results in semidefinite programming. J Global Optim, 1995, 7: 33-50 | | [17] | Vinzant C. What is a spectrahedron? Notices Amer Math Soc, 2014, 61: 492-494 | | [18] | Kuroiwa D, Lee G M. On robust multiobjective optimization. Vietnam J Math, 2012, 40: 305-317 | | [19] | Chuong T D. Robust alternative theorem for linear inequalities with applications to robust multiobjective optimization. Oper Res Lett, 2017, 45: 575-580 | | [20] | Chuong T D. Linear matrix inequality conditions and duality for a class of robust multiobjective convex polynomial programs. SIAM J Optim, 2018, 28: 2466-2488 |
|