Acta mathematica scientia,Series A ›› 2024, Vol. 44 ›› Issue (1): 185-194.
Previous Articles Next Articles
Received:
2023-02-07
Revised:
2023-10-07
Online:
2024-02-26
Published:
2024-01-10
Supported by:
CLC Number:
Huang Jiayi, Sun Xiangkai. Duality Characterizations for a Class of Two-Stage Adjustable Robust Multiobjective Programming[J].Acta mathematica scientia,Series A, 2024, 44(1): 185-194.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] |
Ben-Tal A, Nemirovski A. Robust optimization-methodology and applications. Math Program, 2002, 92: 453-480
doi: 10.1007/s101070100286 |
[2] | Ben-Tal A, EI Ghaoui L, Nemirovski A. Robust Optimization. Princeton: Princeton university press, 2009. |
[3] |
Goberna M A, Jeyakumar V, Li G, López M A. Robust linear semi-infinite programming duality under uncertainty. Math Program, 2013, 139: 185-203
doi: 10.1007/s10107-013-0668-6 |
[4] |
Sun X, Tang L, Zeng J. Characterizations of approximate duality and saddle point theorems for nonsmooth robust vector optimization. Numer Funct Anal Optim, 2020, 41: 462-482
doi: 10.1080/01630563.2019.1660891 |
[5] | 叶冬平, 方东辉. 鲁棒复合优化问题的 Lagrange 对偶. 数学物理学报, 2020, 40A(4): 1095-1107 |
Ye D P, Fang D H. Lagrange duality of robust composite optimization problems. Acta Math Sci, 2020, 40A(4): 1095-1107 | |
[6] |
Ben-Tal A, Goryashko A, Guslitzer E, Nemirovski A. Adjustable robust solutions of uncertain linear programs. Math Program, 2004, 99: 351-376
doi: 10.1007/s10107-003-0454-y |
[7] | Delage E, Iancu D A. Robust multistage decision making. Informs Tutor Oper Res, 2015, 2: 20-46 |
[8] |
Ruiter F, Ben-Tal A, Brekelmans R, Hertog D. Robust optimization of uncertain multistage inventory systems with inexact data in decision rules. Comput Manag Sci, 2017, 14: 45-66
doi: 10.1007/s10287-016-0253-6 |
[9] |
Zhen J, Hertog D D, Sim M. Adjustable robust optimization via Fourier-Motzkin elimination. Oper Res, 2018, 66: 1086-1100
doi: 10.1287/opre.2017.1714 |
[10] |
Jeyakumar V, Li G, Woolnough D. Quadratically adjustable robust linear optimization with inexact data via generalized S-lemma: Exact second-order cone program reformulations. EURO J Comput Optim, 2021, 9: 100019
doi: 10.1016/j.ejco.2021.100019 |
[11] |
Chuong T D, Jeyakumar V, Li G, Woolnough D. Exact SDP reformulations of adjustable robust linear programs with box uncertainties under separable quadratic decision rules via SOS representations of non-negativity. J Global Optim, 2021, 81: 1095-1117
doi: 10.1007/s10898-021-01050-x |
[12] |
Woolnough D, Jeyakumar V, Li G. Exact conic programming reformulations of two-stage adjustable robust linear programs with new quadratic decision rules. Optim Lett, 2021, 15: 25-44
doi: 10.1007/s11590-020-01595-y |
[13] | Chuong T D, Jeyakumar V. Adjustable robust multiobjective linear optimization: Pareto optimal solutions via conic programming. Ann Oper Res, 2022. https://doi.org/10.1007/s10479-022-05104-5 |
[14] |
Chuong T D, Jeyakumar V, Li G, Woolnough D. Exact dual semi-definite programs for affinely adjustable robust SOS-convex polynomial optimization problems. Optimization, 2022, 71: 3539-3569
doi: 10.1080/02331934.2021.1902521 |
[15] |
de Ruiter F J C T, Zhen J, den Hertog D. Dual approach for two-stage robust nonlinear optimization. Oper Res, 2023, 71: 1794-1799
doi: 10.1287/opre.2022.2289 |
[16] |
Ramana M, Goldman A J. Some geometric results in semidefinite programming. J Global Optim, 1995, 7: 33-50
doi: 10.1007/BF01100204 |
[17] | Vinzant C. What is a spectrahedron? Notices Amer Math Soc, 2014, 61: 492-494 |
[18] | Kuroiwa D, Lee G M. On robust multiobjective optimization. Vietnam J Math, 2012, 40: 305-317 |
[19] |
Chuong T D. Robust alternative theorem for linear inequalities with applications to robust multiobjective optimization. Oper Res Lett, 2017, 45: 575-580
doi: 10.1016/j.orl.2017.09.002 |
[20] |
Chuong T D. Linear matrix inequality conditions and duality for a class of robust multiobjective convex polynomial programs. SIAM J Optim, 2018, 28: 2466-2488
doi: 10.1137/17M1143484 |
[1] | Xie Feifei, Fang Donghui. Approximate Farkas Lemma and Approximate Duality for Fractional Optimization Problems [J]. Acta mathematica scientia,Series A, 2023, 43(1): 305-320. |
[2] | Jiaolang Wang,Donghui Fang. Approximate Optimality Conditions and Mixed Type Duality for a Class of Non-Convex Optimization Problems [J]. Acta mathematica scientia,Series A, 2022, 42(3): 651-660. |
[3] | Shengxin Hua,Guolin Yu,Wenyan Han,Xiangyu Kong. Characterization of Optimality to Constrained Vector Equilibrium Problems via Approximate Subdifferential [J]. Acta mathematica scientia,Series A, 2022, 42(2): 365-378. |
[4] | Xinyi Feng,Xiangkai Sun. Characterizations of Farkas Lemmas for a Class of Fractional Optimization with DC Functions [J]. Acta mathematica scientia,Series A, 2021, 41(3): 827-836. |
[5] | Juan Wang,Jie Zhao. Homogenization of the Oscillating Robin Mixed Boundary Value Problems [J]. Acta mathematica scientia,Series A, 2021, 41(1): 81-90. |
[6] | Dongping Ye,Donghui Fang. Lagrange Dualities for Robust Composite Optimization Problems [J]. Acta mathematica scientia,Series A, 2020, 40(4): 1095-1107. |
[7] | Donghui Fang,Liping Tian,Xianyun Wang. Strong Fenchel-Lagrange Duality for Convex Optimization Problems with Composite Function [J]. Acta mathematica scientia,Series A, 2020, 40(1): 20-30. |
[8] | Amir KHOSRAVI, Morteza MIRZAEE AZANDARYANI. APPROXIMATE DUALITY OF g-FRAMES IN HILBERT SPACES [J]. Acta mathematica scientia,Series A, 2014, 34(3): 639-652. |
[9] | CUI Huan-Huan. An Iterative Sequence with Norm Convergence for Accretive Operators in Banach Spaces [J]. Acta mathematica scientia,Series A, 2014, 34(3): 755-759. |
[10] | GUO Shuang-Jian, WANG Shuan-Hong. Crossed Products of Weak Hopf Group Coalgebras [J]. Acta mathematica scientia,Series A, 2014, 34(2): 327-337. |
[11] | CHEN Jia-Wei, LI Jun, WANG Jing-Nan. Optimality Conditions and Duality for Nonsmooth Multiobjective Optimization Problems with Cone Constraints [J]. Acta mathematica scientia,Series A, 2012, 32(1): 1-12. |
[12] | YU Guo-Lin, LIU Wan-Li. Henig Proper Efficiency in the ic-Conen-Convexlike Set-valued Optimization Problems [J]. Acta mathematica scientia,Series A, 2009, 29(3): 800-809. |
[13] | Xiao Xuemei; Zhu Yucan. Duality Principles of Frames in Banach Spaces [J]. Acta mathematica scientia,Series A, 2009, 29(1): 94-102. |
[14] |
Chen Zhe.
Generalized Augmented Lagrangian Duality Theory and Applications in Vector Optimization Problems |
[15] | Xu Huiming;Liu Taishun. Boundary Values and Duality of Some Spaces of Holomorphic [J]. Acta mathematica scientia,Series A, 2006, 26(1): 113-123. |
|