[1] |
Schaaf R. Stationary solutions of chemotaxis systems. Trans Amer Math Soc, 1985, 292(2): 531-556
doi: 10.1090/tran/1985-292-02
|
[2] |
Biler P. Local and global solvability of some parabolic systems modelling chemotaxis. Adv Math Sci Appl, 1998, 8: 715-743
|
[3] |
Gajewski G, Zacharias K. Global behavier of a reaction-diffusion system modelling chemotaxis. Math Nathr, 1998, 195(1): 77-114
|
[4] |
Lorz A. Coupled chemotaxis fluid model. Math Models Methods Appl Sci, 2010, 20(6): 987-1004
doi: 10.1142/S0218202510004507
|
[5] |
Winkler M. Global weak solutions in a three-dimensional chemotaxis-Navier-Stokes system. Ann Inst H Poincaré Anal Non Linéaire, 2016, 33(5): 1329-1352
doi: 10.4171/aihpc
|
[6] |
Arumugam G, Tyagi J. Keller-Segel chemotaxis models: A review. Acta Appl Math, 2021, 171: Article number 6
|
[7] |
Zhong X, Jiang S. Globally bounded in-time solutions to a parabolic-elliptic system modeling chemotaxis. Acta Mathematica Scientia, 2007, 27B(2): 421-429
|
[8] |
Ryu S U, Yagi A. Optimal control of Keller-Segel equations. J Math Anal Appl, 2001, 256: 45-66
doi: 10.1006/jmaa.2000.7254
|
[9] |
Guo B Z, Zhang L. Local null controllability for a chemotaxis system of parabolic-elliptic type. Systems Control Lett, 2014, 65: 106-111
doi: 10.1016/j.sysconle.2013.10.010
|
[10] |
Guo B Z, Zhang L. Local exact controllability to positive trajectory for parabolic system of chemotaxis. Math Control Relat Fields, 2016, 6(1): 143-165
doi: 10.3934/mcrf
|
[11] |
Ammar-Khodja F, Benabdallah A, Gonzalez-Burgos M, et al. Recent results on the controllability of linear coupled parabolic problems: A survey. Math Control Relat Fields, 2011, 1: 267-306
doi: 10.3934/mcrf.2011.1.267
|
[12] |
Fursikov A, Imanuvilov O Yu. Controllability of Evolution Equations. Seoul: Seoul National University, 1996
|
[13] |
Barbu V. Controllability and Stabilization of Parabolic Equations. Berlin: Springer, 2018
|
[14] |
Evans L C. Partial Differential Equations. Providence RI: American Mathematical Society, 2010
|
[15] |
Arendt W. Semigroups and evolution equations:Functional calculus, regularity and kernel estimates. Handbook of Differential Equations: Evolutionary Equations, 2002, 1: 1-85
|
[16] |
Henry D. Geometric Theory of Semilinear Parabolic Equations. Berlin: Springer, 1981
|
[17] |
Barbu V. Analysis and Control of Nonlinear Infinite Dimensional Systems. Bosten: Academic Press, 1993
|