Acta mathematica scientia,Series A ›› 2023, Vol. 43 ›› Issue (6): 1710-1722.
Previous Articles Next Articles
Received:
2022-10-08
Revised:
2023-04-10
Online:
2023-12-26
Published:
2023-11-16
Supported by:
CLC Number:
Xu Fei, Zhang Yong. Uniqueness and Asymptotic Stability of Time-Periodic Solutions for the Fractional Burgers Equation[J].Acta mathematica scientia,Series A, 2023, 43(6): 1710-1722.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] |
Alibaud N, Andreianov B. Non-uniqueness of weak solutions for the fractal Burgers equation. Ann Inst Henri Poincar Anal Non Linéaire, 2010, 27: 997-1016
doi: 10.4171/aihpc |
[2] |
Bouchard J P, Georges A. Anomalous diffusion in disordered media, Statistical mechanics, models and physical applications. Phys Rep, 1990, 195: 127-293
doi: 10.1016/0370-1573(90)90099-N |
[3] | Burgers J M. Correlation problem in a one-dimensional model of turbulence. Nederl Akad Wetensch Proc, 1950, 53: 247-260 |
[4] |
Caffarelli L, Silvestre L. Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation. Ann of Math, 2010, 171(3): 1903-1930
doi: 10.4007/annals |
[5] |
Chen S H, Hsia C H, Jung C Y, Kwon B. Asymptotic stability and bifurcation of time-periodic solutions for the viscous Burger's equation. J Math Anal Appl, 2017, 445: 655-676
doi: 10.1016/j.jmaa.2016.08.018 |
[6] |
Cole J D. On a quasi-linear parabolic equation occurring in aerodynamics. Quart Appl Math, 1951, 9: 225-236
doi: 10.1090/qam/1951-09-03 |
[7] |
Defterli O, D'Elia M, Du Q, et al. Fractional diffusion on bounded domains. Fract Calc Appl Anal, 2015, 18: 342-360
doi: 10.1515/fca-2015-0023 |
[8] |
Dong H, Du D, Li D. Finite time singularities and global well-posedness for fractal Burgers equations. Indiana Univ Math J, 2009, 58: 807-821
doi: 10.1512/iumj.2009.58.3505 |
[9] |
Droniou J, Gallouet T, Vovelle J. Global solution and smoothing effect for a non-local regularization of a hyperbolic equation. J Evol Equ, 2003, 3: 499-521
doi: 10.1007/s00028-003-0503-1 |
[10] |
Galdi G P, Sohr H. Existence and uniqueness of time-periodic physically reasonable Navier-Stokes flow past a body. Arch Ration Mech Anal, 2004, 172: 363-406
doi: 10.1007/s00205-004-0306-9 |
[11] |
Hopf E. The partial differential equation $u_{t}+uu_{x}=\mu u_{xx}$. Comm Pure Appl Math, 1950, 3: 201-230
doi: 10.1002/cpa.v3:3 |
[12] |
Hsia C H, Shiue M C. On the asymptotic stability analysis and the existence of time-periodic solutions of the primitive equations. Indiana Univ Math J, 2013, 62: 403-441
doi: 10.1512/iumj.2013.62.4902 |
[13] |
Iwabuchi T. Analyticity and large time behavior for the Burgers equation and the quasi-geostrophic equation, the both with the critical dissipation. Ann Inst Henri Poincar Anal Non Linéaire, 2020, 37: 855-876
doi: 10.4171/aihpc |
[14] |
Kato T, Ponce G. Commutator estimates and the Euler and Navier-Stokes equations. Comm Pure Appl Math, 1988, 41: 891-907
doi: 10.1002/cpa.v41:7 |
[15] |
Kiselev A, Nazarov F, Shterenberg R. Blow up and regularity for fractal Burgers euation. Dyn Partial Differ Equ, 2008, 5: 211-240
doi: 10.4310/DPDE.2008.v5.n3.a2 |
[16] | Kobayashi T. Time periodic solutions of the Navier-Stokes equations with the time periodic Poiseuille flow under (GOC) for a symmetric perturbed channel in $R^{2}$. J Math Soc Japan, 2015, 67: 1023-1042 |
[17] |
Mellet A, Mischler S, Mouhot C. Fractional diffusion limit for collisional kinetic equations. Arch Ration Mech Anal, 2011, 199: 493-525
doi: 10.1007/s00205-010-0354-2 |
[18] |
Miao C, Wu G. Global well-posedness of the critical Burgers equation in critiacal Besov spaces. J Differential Equations, 2009, 247: 1673-1693
doi: 10.1016/j.jde.2009.03.028 |
[19] | Wang T, Zhang B. Forced oscillation of viscous Burgers' equation with a time-periodic force. Discrete Contin Dyn Syst Ser B, 2021, 26: 1205-1221 |
[20] | Xu F, Zhang Y, Li F. Uniqueness and stability of steady-state solution with finite energy to the fractal Burgers equation. arXiv:2107.11761v1 |
[1] | Fan Shishi, Li Haixia, Lu Yindou. Dynamics Analysis of a Diffusive Predator-Prey Model with Beddington-DeAngelis Function Response and Harvesting [J]. Acta mathematica scientia,Series A, 2023, 43(6): 1929-1942. |
[2] | He Xuyang,Mao Mingzhi,Zhang Tengfei. Existence and Stability of a Class of Impulsive Neutral Stochastic Functional Differential Equations with Poisson Jump [J]. Acta mathematica scientia,Series A, 2023, 43(4): 1221-1243. |
[3] | Li Jize,Qiu Jixiu,Zhou Yonghui. Anticipative Nonlinear Filtering Equations Affected by Observation Noises and Stability of Linear Filtering [J]. Acta mathematica scientia,Series A, 2023, 43(4): 1244-1254. |
[4] | Nan Deng,Meiqiang Feng. Positive Doubly Periodic Solutions To Telegraph Equations: Existence, Uniqueness, Multiplicity and Asymptotic Behavior [J]. Acta mathematica scientia,Series A, 2022, 42(5): 1360-1380. |
[5] | Shengliang Zhang,Junxian Huang. A High Order MQ Quasi-Interpolation Method for Time Fractional Black-Scholes Model [J]. Acta mathematica scientia,Series A, 2022, 42(5): 1496-1505. |
[6] | Hongxing Wu,Dengbin Yuan,Shenghua Wang. Asymptotic Stability Analysis of Solutions to Transport Equations in Structured Bacterial Population Growth [J]. Acta mathematica scientia,Series A, 2022, 42(3): 807-817. |
[7] | Shaowen Yao,Wenjie Li,Zhibo Cheng. Nondegeneracy and Uniqueness of Periodic Solution for Third-Order Nonlinear Differential Equations [J]. Acta mathematica scientia,Series A, 2022, 42(2): 454-462. |
[8] | Jianzhong Min,Xiangao Liu,Zixuan Liu. Serrin's Type Solutions of the Incompressible Liquid Crystals System [J]. Acta mathematica scientia,Series A, 2021, 41(6): 1671-1683. |
[9] | Zaiyong Feng,Ning Chen,Yongpeng Tai,Zhengrong Xiang. On the Observer Design for Fractional Singular Linear Systems [J]. Acta mathematica scientia,Series A, 2021, 41(5): 1529-1544. |
[10] | Qing Cao,Xiaochuan Xu. Inverse Spectral Problem for the Diffusion Operator from a Particular Set of Eigenvalues [J]. Acta mathematica scientia,Series A, 2021, 41(3): 577-582. |
[11] | Xiling Li,Fei Gao,Wenqin Li. Stability Analysis of Fractional-Order Hepatitis B Virus Infection Model With Immune Delay [J]. Acta mathematica scientia,Series A, 2021, 41(2): 562-576. |
[12] | Jiao Luo,Qian Qi,Hong Luo. Weak Solutions to Higher-Order Anisotropic Cahn-Hilliard-Navier-Stokes Systems [J]. Acta mathematica scientia,Series A, 2020, 40(6): 1599-1611. |
[13] | Haixia Li. Existence and Uniqueness of Positive Solutions to an Unstirred Chemostat with Toxins [J]. Acta mathematica scientia,Series A, 2020, 40(5): 1175-1185. |
[14] | Shimin Xu,Chunhua Wang. Local Uniqueness of a Single Peak Solution of a Subcritical Kirchhoff Problem in R3 [J]. Acta mathematica scientia,Series A, 2020, 40(2): 432-440. |
[15] | Cheng Ouyang,Weigang Wang,Jiaqi Mo. The Fractional Generalized Disturbed Thermal Wave Equation [J]. Acta mathematica scientia,Series A, 2020, 40(2): 452-459. |
|