Acta mathematica scientia,Series A ›› 2023, Vol. 43 ›› Issue (5): 1559-1574.
Previous Articles Next Articles
Received:
2022-10-26
Revised:
2023-04-10
Online:
2023-10-26
Published:
2023-08-09
Contact:
Caidi Zhao
E-mail:zhaocaidi2013@163.com
Supported by:
CLC Number:
Zou Tianfang,Zhao Caidi. Statistical Solutions and Kolmogorov Entropy for First-Order Lattice Systems in Weighted Spaces[J].Acta mathematica scientia,Series A, 2023, 43(5): 1559-1574.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] |
Foias C, Prodi G. Sur les solutions statistiques des équations de Naiver-Stokes. Ann Mat Pur Appl, 1976, 111: 307-330
doi: 10.1007/BF02411822 |
[2] | Foias C, Manley O, Rosa R, Temam R. Navier-Stokes Equations and Turbulence. Cambridge: Cambridge University Press, 2001 |
[3] |
Vishik M, Fursikov A. Translationally homogeneous statistical solutions and individual solutions with infinite energy of a system of Navier-Stokes equations. Siberian Math J, 1978, 19: 710-729
doi: 10.1007/BF00973601 |
[4] |
Chekroun M, Glatt-Holtz N. Invariant measures for dissipative dynamical systems: Abstract results and applications. Commun Math Phys, 2012, 316(3): 723-761
doi: 10.1007/s00220-012-1515-y |
[5] | Łukaszewicz G, Robinson J C. Invariant measures for non-autonomous dissipative dynamical systems. Discrete Cont Dyn Syst, 2014, 34: 4211-4222 |
[6] | Wang X. Upper-semicontinuity of stationary statistical properties of dissipative systems. Discrete Cont Dyn Syst, 2009, 23: 521-540 |
[7] |
Bronzi A, Mondaini C, Rosa R. Trajectory statistical solutions for three-dimensional Navier-Stokes-like systems. SIAM J Math Anal, 2014, 46: 1893-1921
doi: 10.1137/130931631 |
[8] |
Bronzi A, Mondaini C, Rosa R. Abstract framework for the theory of statistical solutions. J Differ Equations, 2016, 260: 8428-8484
doi: 10.1016/j.jde.2016.02.027 |
[9] |
Zhao C, Li Y, Caraballo T. Trajectory statistical solutions and Liouville type equations for evolution equations: Abstract results and applications. J Differ Equations, 2020, 269: 467-494
doi: 10.1016/j.jde.2019.12.011 |
[10] | Jiang H, Zhao C. Trajectory statistical solutions and Liouville type theorem for nonlinear wave equations with polynomial growth. Adv Differential Equ, 2021, 26(3/4): 107-132 |
[11] |
Zhao C, Caraballo T. Asymptotic regularity of trajectory attractor and trajectory statistical solution for the 3D globally modified Navier-Stokes equations. J Differ Equations, 2019, 266: 7205-7229
doi: 10.1016/j.jde.2018.11.032 |
[12] | Zhao C, Li Y, Łukaszewicz G. Statistical solution and partial degenerate regularity for the 2D non-autonomous magneto-micropolar fluids. Z Angew Math Phys, 2020, 71: Article number 141 |
[13] | Zhao C, Li Y, Sang Y. Using trajectory attractor to construct trajectory statistical solution for the 3D incompressible micropolar flows. Z Angew Math Mech, 2020, 100: e201800197 |
[14] |
Zhao C, Song Z, Caraballo T. Strong trajectory statistical solutions and Liouville type equation for dissipative Euler equations. Appl Math Lett, 2020, 99: 105981
doi: 10.1016/j.aml.2019.07.012 |
[15] |
Zhao C, Li Y, Song Z. Trajectory statistical solutions for the 3D Navier-Stokes equations: The trajectory attractor approach. Nonlinear Anal: RWA, 2020, 53: 103077
doi: 10.1016/j.nonrwa.2019.103077 |
[16] |
Zhao C, Wang J, Caraballo T. Invariant sample measures and random Liouville type theorem for the two-dimensional stochastic Navier-Stokes equations. J Differ Equations, 2022, 317: 474-494
doi: 10.1016/j.jde.2022.02.007 |
[17] |
Carrol T, Pecora L. Synchronization in chaotic systems. Phys Rev Lett, 1990, 64: 821-824
pmid: 10042089 |
[18] | Chow S N, Mallet-Paret J, Van Vleck E S. Pattern formation and spatial chaos in spatially discrete evolution equations. Rand Comp Dyn, 1996, 4: 109-178 |
[19] |
Chua L O, Yang L. Cellular neural networks: Theory. IEEE Trans Circ Syst, 1988, 35: 1257-1272
doi: 10.1109/31.7600 |
[20] |
Chua L O, Yang L. Cellular neural networks: Applications. IEEE Trans Circ Syst, 1988, 35: 1273-1290
doi: 10.1109/31.7601 |
[21] |
Erneux T, Nicolis G. Propagating waves in discrete bistable reaction diffusion systems. Physica D, 1993, 67: 237-244
doi: 10.1016/0167-2789(93)90208-I |
[22] |
Wang B. Dynamics of systems on infinite lattices. J Differ Equations, 2006, 221: 224-245
doi: 10.1016/j.jde.2005.01.003 |
[23] |
Zhou S, Shi W. Attractors and dimension of dissipative lattice systems. J Differ Equations, 2006, 224: 172-204
doi: 10.1016/j.jde.2005.06.024 |
[24] |
Wang B. Asymptotic behavior of non-autonomous lattice systems. J Math Anal Appl, 2007, 331: 121-136
doi: 10.1016/j.jmaa.2006.08.070 |
[25] | Zhao X, Zhou S. Kernel sections for processes and nonautonomous lattice systems. Discrete Cont Dyn Syst-B, 2008, 9(3/4): 763-785 |
[26] | Zhou S, Zhao C. Compact uniform attractors for dissipative non-autonomous lattice dynamical systems. Commun Pure Appl Anal, 2007, 21: 1087-1111 |
[27] |
Zhao C, Zhou S. Attractors of retarded first order lattice systems. Nonlinearity, 2007, 20: 1987-2006
doi: 10.1088/0951-7715/20/8/010 |
[28] |
Han X, Shen W, Zhou S. Random attractors for stochastic lattice dynamical systems in weighted spaces. J Differ Equations, 2011, 250: 1235-1266
doi: 10.1016/j.jde.2010.10.018 |
[29] |
Zhao C, Zhou S. Sufficient conditions for the existence of global random attractors for stochastic lattice dynamical systems and applications. J Math Anal Appl, 2009, 354: 78-95
doi: 10.1016/j.jmaa.2008.12.036 |
[30] |
Zhou S. Random exponential attractor for cocycle and application to non-autonomous stochastic lattice systems with multiplicative white noise. J Differ Equations, 2017, 263: 2247-2279
doi: 10.1016/j.jde.2017.03.044 |
[31] |
Abdallah A Y. Uniform exponential attractors for first order non-autonomous lattice dynamical systems. J Differ Equations, 2011, 251: 1489-1504
doi: 10.1016/j.jde.2011.05.030 |
[32] | 赵才地, 周盛凡. 格点系统存在指数吸引子的充分条件及应用. 数学学报, 2010, 53: 233-242 |
Zhao C, Zhou S. Sufficient conditions for the existence of exponential attractor for lattice system. Acta Math Sin, 2010, 53: 233-242 | |
[33] |
Zhou S, Han X. Pullback exponential attractors for non-autonomous lattice systems. J Dyn Differ Equ, 2012, 24(3): 601-631
doi: 10.1007/s10884-012-9260-7 |
[34] | Wang Z, Zhou S. Existence and upper semicontinuity of attractors for non-autonomous stochastic lattice FitzHugh-Nagumo systems in weighted spaces. Adv Differ Equ, 2016, Article number 310 |
[35] | Han X, Kloeden P E. Pullback and forward dynamics of nonautonomous Laplacian lattice systems on weighted spaces. Discrete Cont Dyn Syst-S, 2022, 15(10): 2909-2927 |
[36] |
Abdallah A Y, Abu-Shaab H N, Ai-Khoder T M, et al. Dynamics of non-autonomous first order lattice systems in weighted spaces. J Math Phys, 2022, 63(10): 102703
doi: 10.1063/5.0090227 |
[37] | 李永军, 桑燕苗, 赵才地. 一阶格点系统的不变测度与Liouville型方程. 数学物理学报, 2020, 40A(2): 328-339 |
Li Y, Sang Y, Zhao C. Invariant measures and Liouville type theorem for fisrt-order lattice system. Acta Math Sci, 2020, 40A(2): 328-339 | |
[38] | Zhao C, Xue G, Łukaszewicz G. Pullabck attractors and invariant measures for the discrete Klein-Gordon-Schrödinger equatios. Discrete Cont Dyn Syst-B, 2018, 23: 4021-4044 |
[39] | Carvalho A, Langa J A, Robinson J C. Attractors for Infinite-Dimensional Non-Autonomous Dynamical Systems. New York: Springer, 2013 |
[40] | Lorentz G G, Golitschek M, Makovoz Y. Constructive Approximation:Advanced Problems. Berlin: Springer, 1996 |
[1] | Jie Cao,Lan Huang,Keqin Su. The Convergence of Pullback Attractors for Navier-Stokes Equations with Weak Damping [J]. Acta mathematica scientia,Series A, 2022, 42(4): 1173-1185. |
[2] | Caidi Zhao,Huite Jiang,Chunqiu Li,Caraballo Tomás. Statistical Solutions and Its Limiting Behavior for the Impulsive Discrete Ginzburg-Landau Equations [J]. Acta mathematica scientia,Series A, 2022, 42(3): 784-806. |
[3] | Mingyue Xu,Caidi Zhao,Caraballo Tomás. Degenerate Regularity of Trajectory Statistical Solutions for the 3D Incompressible Navier-Stokes Equations [J]. Acta mathematica scientia,Series A, 2021, 41(2): 336-344. |
[4] | Xiaoming Peng,Xiaoxiao Zheng,Yadong Shang. Pullback Attractors for Navier-Stokes-Voigt Equations with Nonlinear Damping [J]. Acta mathematica scientia,Series A, 2021, 41(2): 357-369. |
[5] | Qiaoyi Xiao,Chunqiu Li. Invariant Borel Probability Measures for the Discrete Three Component Reversible Gray-Scott Model [J]. Acta mathematica scientia,Series A, 2021, 41(2): 523-537. |
[6] | Kaixuan Zhu,Yongqin Xie,Feng Zhou,Xijun Deng. Pullback Attractors for the Complex Ginzburg-Landau Equations with Delays [J]. Acta mathematica scientia,Series A, 2020, 40(5): 1341-1353. |
[7] | Yongjun Li,Yanmiao Sang,Caidi Zhao. Invariant Measures and Liouville Type Equation for First-Order Lattice System [J]. Acta mathematica scientia,Series A, 2020, 40(2): 328-339. |
[8] | Wang Yonghai, Qin Yuming. Upper Semicontinuity of Pullback Attractors for Nonclassical Diffusion Equations in H01(Ω) [J]. Acta mathematica scientia,Series A, 2016, 36(5): 946-957. |
[9] | Yang Xinguang, Zhao Mingxia, Hou Wei. Upper Semi-Continuity of Pullback Attractors for the 2D Non-Autonomous Navier-Stokes Equations with Weak Damping [J]. Acta mathematica scientia,Series A, 2016, 36(4): 722-739. |
[10] | YANG Xin-Bo, ZHAO Cai-De, JIA Xiao-Lin. The Uniform Attractor and Entropy of the Autonomous Coupled Nonlinear SchrÖdinger Equations on Infinite Lattices [J]. Acta mathematica scientia,Series A, 2013, 33(4): 636-645. |
[11] | WANG Xiao-Hu, LI Shu-Yong. Pullback Attractors for Non-autonomous 2D Navier-Stokes Equations with Linear Dampness in Some Unbounded Domains [J]. Acta mathematica scientia,Series A, 2009, 29(4): 873-881. |
|