Acta mathematica scientia,Series A ›› 2023, Vol. 43 ›› Issue (5): 1529-1558.
Previous Articles Next Articles
Cheng Ming(),Wang Dingcheng*()
Received:
2021-06-21
Revised:
2022-07-05
Online:
2023-10-26
Published:
2023-08-09
Contact:
Dingcheng Wang
E-mail:chming@std.uestc.edu.cn;wangdc@uestc.edu.cn
Supported by:
CLC Number:
Cheng Ming,Wang Dingcheng. Asymptotic Finite-Time Ruin Probability for a Bidimensional Perturbed Risk Model with General Investment Returns and Time-Dependent Claim Sizes[J].Acta mathematica scientia,Series A, 2023, 43(5): 1529-1558.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] | Asmussen S, Albrecher H. Ruin Probabilities. New Jersey: World Scientific, 2010 |
[2] | Bingham N H, Goldie C M, Teugels J L. Regular Variation. Cambridge: Cambridge University Press, 1987 |
[3] |
Chan W S, Yang H L, Zhang L Z. Some results on ruin probabilities in a two-dimensional risk model. Insurance Math Econom, 2003, 32(3): 345-358
doi: 10.1016/S0167-6687(03)00115-X |
[4] |
Chen Y, Wang Y B, Wang K Y. Asymptotic results for ruin probability of a two-dimensional renewal risk model. Stoch Anal Appl, 2013, 31(1): 80-91
doi: 10.1080/07362994.2013.741386 |
[5] |
Cheng D Y, Yu C J. Uniform asymptotics for the ruin probabilities in a bidimensional renewal risk model with strongly subexponential claims. Stochastics, 2019, 91(5): 643-656
doi: 10.1080/17442508.2018.1539088 |
[6] |
Fu K A, Ng C Y A. Uniform asymptotics for the ruin probabilities of a two-dimensional renewal risk model with dependent claims and risky investments. Statist Probab Lett, 2017, 125: 227-235
doi: 10.1016/j.spl.2017.02.015 |
[7] |
Fu K A, Yu C L. On a two-dimensional risk model with time-dependent claim sizes and risky investments. J Comput Appl Math, 2018, 344: 367-380
doi: 10.1016/j.cam.2018.05.043 |
[8] |
Gaier J, Grandits P. Ruin probabilities in the presence of regularly varying tails and optimal investment. Insurance Math Econom, 2002, 30(2): 211-217
doi: 10.1016/S0167-6687(02)00101-4 |
[9] |
Gao Q W, Yang X Z. Asymptotic ruin probabilities in a generalized bidimensional risk model perturbed by diffusion with constant force of interest. J Math Anal Appl, 2014, 419(2): 1193-1213
doi: 10.1016/j.jmaa.2014.05.069 |
[10] |
Guo F L, Wang D C. Uniform asymptotic estimates for ruin probabilities of renewal risk models with exponential Levy process investment returns and dependent claims. Appl Stochastic Models Bus Ind, 2013, 29(3): 295-313
doi: 10.1002/asmb.v29.3 |
[11] |
Guo F L, Wang D C. Tail asymptotic for discounted aggregate claims with one-sided linear dependence and general investment return. Sci China Math, 2019, 62(4): 735-750
doi: 10.1007/s11425-017-9167-0 |
[12] |
Guo F L, Wang D C, Yang H L. Asymptotic results for ruin probability in a two-dimensional risk model with stochastic investment returns. J Comput Appl Math, 2017, 325: 198-221
doi: 10.1016/j.cam.2017.04.049 |
[13] |
Guo F L, Wang D C. Finite-and infinite-time ruin probabilities with general stochastic investment return processes and bivariate upper tail independent and heavy-tailed claims. Adv Appl Probab, 2013, 45(1): 241-273
doi: 10.1239/aap/1363354110 |
[14] |
Heston S L. A closed-form solution for options with stochastic volatility with applications to bond and currency options. Rev Financ Stud, 1993, 6(2): 327-343
doi: 10.1093/rfs/6.2.327 |
[15] |
Heyde C C, Wang D C. Finite-time ruin probability with an exponential Lévy process investment return and heavy-tailed claims. Adv Appl Probab, 2009, 41(1): 206-224
doi: 10.1239/aap/1240319582 |
[16] |
Hu Z C, Jiang B. On joint ruin probabilities of a two-dimensional risk model with constant interest rate. J Appl Probab, 2013, 50(2): 309-322
doi: 10.1239/jap/1371648943 |
[17] |
Jiang T, Wang Y B, Chen Y, et al. Uniform asymptotic estimate for finite-time ruin probabilities of a time-dependent bidimensional renewal model. Insurance Math Econom, 2015, 64: 45-53
doi: 10.1016/j.insmatheco.2015.04.006 |
[18] |
Li J Z. A revisit to asymptotic ruin probabilities for a bidimensional renewal risk model. Statist Probab Lett, 2018, 140: 23-32
doi: 10.1016/j.spl.2018.04.003 |
[19] |
Liu R F, Wang D C. The ruin probabilities of a discrete-time risk model with dependent insurance and financial risks. J Math Anal Appl, 2016, 444(1): 80-94
doi: 10.1016/j.jmaa.2016.05.047 |
[20] |
Lu D W, Zhang B. Some asymptotic results of the ruin probabilities in a two-dimensional renewal risk model with some strongly subexponential claims. Statist Probab Lett, 2016, 114: 20-29
doi: 10.1016/j.spl.2016.03.005 |
[21] | Ming R X, He X X, Hu Y J, et al. Uniform estimate on finite time ruin probabilities with random interest rate. Acta Math Sci, 2010, 30B(3): 688-700 |
[22] | Shreve S E. Stochastic Calculus for Finance II:Continuous-Time Models. New York: Springer Science and Business Media, 2004 |
[23] | Tang Q H. Asymptotic ruin probabilities of the renewal model with constant interest force and regular variation. Scand Actuar J, 2005, 1: 1-5 |
[24] |
Tang Q H, Wang G J, Yuen K C. Uniform tail asymptotics for the stochastic present value of aggregate claims in the renewal risk model. Insurance Math Econom, 2010, 46: 362-370
doi: 10.1016/j.insmatheco.2009.12.002 |
[25] |
Yang H Z, Li J Z. Asymptotic ruin probabilities for a bidimensional renewal risk model. Stochastics, 2017, 89(5): 687-708
doi: 10.1080/17442508.2016.1276909 |
[26] |
Yang Y, Wang Y B. Tail behavior of the product of two dependent random variables with applications to risk theory. Extremes, 2012, 16(1) 55-74
doi: 10.1007/s10687-012-0153-2 |
[27] |
Yuen K C, Guo J Y, Wu X Y. On the first time of ruin in the bivariate compound Poisson model. Insurance Math Econom, 2006, 38(2): 298-308
doi: 10.1016/j.insmatheco.2005.08.011 |
[1] | Zhenlong Chen,Yang Liu,Ke-ang Fu. Precise Large Deviations for a Bidimensional Risk Model with the Regression Dependent Structure [J]. Acta mathematica scientia,Series A, 2022, 42(3): 934-942. |
[2] | Hongmin Xiao,Zhankui Wang. The Precise Large Deviations of a Bidimensional Risk Model Based on Customer Arrival [J]. Acta mathematica scientia,Series A, 2020, 40(4): 1108-1120. |
[3] | Yingchun Deng,Man Li,Ya Huang,Jieming Zhou. On the Analysis of Ruin-Related Quantities in the Nonhomogeneous Compound Poisson Risk Model [J]. Acta mathematica scientia,Series A, 2020, 40(2): 501-514. |
[4] | Xiaoxiao Zhang,Hua Dong. Dividend Problem with Parisian Delay for the Classical Risk Model with Debit Interest [J]. Acta mathematica scientia,Series A, 2019, 39(5): 1272-1280. |
[5] | Zhang Wanlu, Yin Xiaolong, Zhao Xianghua. On the Occupation Times in a Dual Delayed Sparre Andersen Risk Model [J]. Acta mathematica scientia,Series A, 2019, 39(4): 918-931. |
[6] | BI Xiu-Chun, ZHANG Shu-Guang. Ruin Probability in a Risk Model under Unexpected Random Heavy-tailed Claims [J]. Acta mathematica scientia,Series A, 2012, 32(2): 257-262. |
[7] | ZHAO Jin-Yan, LIU Guo-Xin. Joint Distributions of Some Actuarial Random Vectors in the Continuous-time Compound Binomial Model [J]. Acta mathematica scientia,Series A, 2010, 30(3): 677-693. |
[8] | HE Jing-Min, WU Rong. Some Distributions for the Classical |Risk Process Perturbed by Brownian Motion [J]. Acta mathematica scientia,Series A, 2010, 30(3): 818-827. |
[9] | XU Jin-You, HU Yi-Jun, WEI Xiao. Duration of Negative Surplus for Compound Poisson Risk Model with Constant Interest Force [J]. Acta mathematica scientia,Series A, 2010, 30(1): 1-17. |
[10] | LIU Juan, XU Jian-Cheng. Moments of the Discounted Dividends and Related Problems in a Markov-dependent Risk Model [J]. Acta mathematica scientia,Series A, 2009, 29(5): 1390-1397. |
[11] | YANG Yang, WANG Yue-Bao. Asymptotic Estimate for the Probability of an Exceedance over Negatively Associated Renewal Thresholds and the Ruin Probability in Dividend Barrier Models [J]. Acta mathematica scientia,Series A, 2009, 29(3): 669-676. |
[12] | Yin Chuancun; Zhao Xianghua; Hu Feng. Ladder Height and Supremum of a Random Walk with Applications in Risk Theory [J]. Acta mathematica scientia,Series A, 2009, 29(1): 38-47. |
[13] |
Wei Xiao;Yu Jinyou; Hu Yijun.
Large Deviations and Finite Time Ruin Probability for Perturbed Risk Model with Variable Premium Rate [J]. Acta mathematica scientia,Series A, 2007, 27(4): 616-623. |
[14] | ZHANG Chun-Sheng, TUN Rong. UnionDistributions of Extreme Value on Classical Risk Model [J]. Acta mathematica scientia,Series A, 2003, 23(1): 25-30. |
|