Acta mathematica scientia,Series A ›› 2023, Vol. 43 ›› Issue (4): 1284-1296.
Previous Articles Next Articles
Jian Jinbao(),Lin Hui(),Ma Guodong*()
Received:
2022-09-20
Revised:
2023-02-20
Online:
2023-08-26
Published:
2023-07-03
Contact:
Guodong Ma
E-mail:jianjb@gxu.edu.cn;lh092561@163.com;mgd2006@163.com
Supported by:
CLC Number:
Jian Jinbao,Lin Hui,Ma Guodong. A Splitting Sequence Quadratic Programming Algorithm for the Large-Scale Nonconvex Nonseparable Optimization Problems[J].Acta mathematica scientia,Series A, 2023, 43(4): 1284-1296.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] |
Douglas J, Rachford Jr H H. On the numerical solution of the heat conduction problem in two and three space variables. Transactions of the American Mathematical Society, 1956, 82(2): 421-439
doi: 10.1090/tran/1956-082-02 |
[2] |
Peaceman D W, Rachford Jr H H. The numerical solution of parabolic and elliptic differential equations. Journal of the Society for Industrial and Applied Mathematics, 1955, 3: 28-41
doi: 10.1137/0103003 |
[3] | Wang F H, Cao W F, Xu Z B. Convergence of multi-block Bregman ADMM for nonconvex composite problems. Science China Information Sciences, 2018, 61: 1-12 |
[4] | Wang F H, Xu Z B, Xu H K. Convergence of Bregman alternating direction method with multipliers for nonconvex composite problems. arXiv preprint arXiv: 1410.8625, 2014 |
[5] |
Guo K, Han D R, Wu T T. Convergence of alternating direction method for minimizing sum of two nonconvex functions with linear constraints. International Journal of Computer Mathematics, 2017, 94(8): 1653-1669
doi: 10.1080/00207160.2016.1227432 |
[6] |
Chao M T, Zhang Y, Jian J B. An inertial proximal alternating direction method of multipliers for nonconvex optimization. International Journal of Computer Mathematics, 2021, 98(6): 1199-1217
doi: 10.1080/00207160.2020.1812585 |
[7] | 简金宝, 刘鹏杰, 江羡珍. 非凸多分块优化部分对称正则化交替方向乘子法. 数学学报 (中文版), 2021, 64(6): 1005-1026 |
Jian J B, Liu P J, Jiang X Z. A partially symmetric regularized alternating direction method of multipliers for nonconvex multi-block optimization. Acta Mathematica Sinica, Chinese Series, 2021, 64(6): 1005-1026 | |
[8] |
Jia Z H, Gao X, Cai X J, Han D R. Local linear convergence of the alternating direction method of multipliers for nonconvex separable optimization Problems. Journal of Optimization Theory and Applications, 2021, 188(1): 1-25
doi: 10.1007/s10957-020-01782-y |
[9] |
Li G Y, Pong T K. Global convergence of splitting methods for nonconvex composite optimization. SIAM Journal on Optimization, 2015, 25(4): 2434-2460
doi: 10.1137/140998135 |
[10] | 王娇浪, 方东辉. 一类非凸约束优化问题的近似最优性条件及其混合型对偶. 数学物理学报, 2022, 42A(3): 651-660 |
Wang J L, Fang D H. Approximate optimality conditions and mixed type duality for a class of non-convex optimization problems. Acta Mathematica Scientia, 2022, 42A(3): 651-660 | |
[11] |
Hong M Y, Luo Z Q. Razaviyayn M. Convergence analysis of alternating direction method of multipliers for a family of nonconvex problems. SIAM Journal on Optimization, 2016, 26(1): 337-364
doi: 10.1137/140990309 |
[12] | Guo K, Han D R, Wu T T. Convergence of ADMM for optimization problems with nonseparable nonconvex objective and linear constraints. Pacific Journal of Optimization, 2018, 14: 489-506 |
[13] |
Liu Q H, Shen X Y, Gu Y T. Linearized ADMM for nonconvex nonsmooth optimization with convergence analysis. IEEE Access, 2019, 7: 76131-76144
doi: 10.1109/Access.6287639 |
[14] | 刘鹏杰, 简金宝, 许佳伟, 马国栋. 非凸不可分优化线性近似Bregman 型 Peaceman-Rachford 分裂算法. 数学学报 (中文版), 2023, 66(1): 75-94 |
Liu P J, Jian J B, Xu J W, Ma G D. A linear approximation Bregman-type Peaceman-Rachford splitting method for nonconvex nonseparable optimization. Acta Mathematica Sinica, Chinese Series, 2023, 66(1): 75-94 | |
[15] | Wilson R B. A Simplicial Method for Concave Programming[D]. Cambridge: Graduate School of Business Administration, Harvard University, 1963 |
[16] |
Jian J B. A superlinearly convergent implicit smooth SQP algorithm for mathematical programs with nonlinear complementarity constraints. Computational Optimization and Applications, 2005, 31(3): 335-361
doi: 10.1007/s10589-005-3230-5 |
[17] | 简金宝. 光滑约束优化快速算法:理论分析与数值实验. 北京: 科学出版社, 2010 |
Jian J B. Fast Algorithms for Smooth Constrained Optimization-Theoretical Analysis and Numerical Experiments. Beijing: Science Press, 2010 | |
[18] |
Huang M X, Pu D G. A trust-region SQP method without a penalty or a filter for nonlinear programming. Journal of Computational and Applied Mathematics, 2015, 281: 107-119
doi: 10.1016/j.cam.2014.12.021 |
[19] | Jian J B, Chao M T, Jiang X Z, Han D L. On the convexity and existence of solutions to quadratic programming problems with convex constraint. Pacific Journal of Optimization, 2019, 15(1): 9145-9155 |
[20] | Jian J B, Zhang C, Liu P J. A superlinearly convergent splitting feasible sequential quadratic optimization method for two-block large-scale smooth optimization. Acta Mathematica Scientia, 2023, 43B(1): 1-24 |
[21] | 简金宝, 劳译娴, 晁绵涛, 马国栋. 线性约束两分块非凸优化的ADMM-SQP算法. 运筹学学报, 2018, 22(2): 79-92 |
Jian J B, Lao Y X, Chao M T, Ma G D. ADMM-SQP algorithm for two blocks linear constrained nonconvex optimization. Operations Research Transactions, 2018, 22(2): 79-92 | |
[22] |
Jian J B, Liu P J, Yin J H, Zhang C, Chao M T. A QCQP-based splitting SQP algorithm for two-block nonconvex constrained optimization problems with application. Journal of Computational and Applied Mathematics, 2021, 390(1): 113368
doi: 10.1016/j.cam.2020.113368 |
[23] | Hock W, Schittkowski K. Tests Examples for Nonlinear Programming Codes. Lecture Notes in Economics and Mathematical Systems. Berlin, Heidelbeg, New York: Springer-Verlag, 1981, 187 |
[1] | Liu Pengjie, Wu Yanqiang, Shao Feng, Zhang Yan, Shao Hu. Two Extended HS-type Conjugate Gradient Methods with Restart Directions [J]. Acta mathematica scientia,Series A, 2023, 43(2): 570-580. |
[2] | Ning Zhang,Jinkui Liu. Spectral LS-type Projection Algorithm for Solving Nonlinear Pseudo-Monotone Equations [J]. Acta mathematica scientia,Series A, 2022, 42(6): 1886-1897. |
[3] | Tingwei Pan,Suxiang He. The Greedy Simplex Algorithm for Double Sparsity Constrained Optimization Problems [J]. Acta mathematica scientia,Series A, 2022, 42(3): 920-933. |
[4] | Gonglin Yuan,Yulun Wu,Hongtruong Pham. A Modified HS-DY-Type Method with Nonmonotone Line Search for Image Restoration and Unconstrained Optimization Problems [J]. Acta mathematica scientia,Series A, 2022, 42(2): 605-620. |
[5] | Zhibin Zhu,Yuanhang Geng. A Modified Three-Term WYL Conjugate Gradient Method [J]. Acta mathematica scientia,Series A, 2021, 41(6): 1871-1879. |
[6] | Guodong Ma. Improved PRP and HS Conjugate Gradient Methods with the Strong Wolfe Line Search [J]. Acta mathematica scientia,Series A, 2021, 41(3): 837-847. |
[7] | Xiaoni Chi,Rong Zeng,Sanyang Liu,Zhibin Zhu. A Regularized Nonmonotone Inexact Smoothing Newton Algorithm for Weighted Symmetric Cone Complementarity Problems [J]. Acta mathematica scientia,Series A, 2021, 41(2): 507-522. |
[8] | Guodong Ma. A Strongly Convergent Generalized Gradient Projection Method for Minimax Optimization with General Constraints [J]. Acta mathematica scientia,Series A, 2020, 40(3): 641-649. |
[9] | HU Chao-Ming, WAN Zhong, WANG Xu. A New Nonmonotone Spectral Conjugate Gradient Algorithm [J]. Acta mathematica scientia,Series A, 2013, 33(1): 78-88. |
[10] | TANG Jing-Yong, HE Guo-Ping. A One-step Smoothing Newton Method for Second-order Cone Programming [J]. Acta mathematica scientia,Series A, 2012, 32(4): 768-778. |
[11] | FENG Ting-Ting, HAN Cong-Ying, HE Guo-Ping. A Modified SQP Parallel Variable Distribution Algorithm [J]. Acta mathematica scientia,Series A, 2012, 32(2): 336-343. |
[12] | Zhang Li; Zhou Weijun. On the Global Convergence of the Hager-Zhang Conjugate Gradient Method with Armijo Line Search [J]. Acta mathematica scientia,Series A, 2008, 28(5): 840-845. |
[13] |
Tong Xiaojiao ;He Wei.
Lagrangian Globalization Projection Methods for Nonlinear Constrained Equations [J]. Acta mathematica scientia,Series A, 2008, 28(1): 96-108. |
[14] |
Zhou Changyin; He Guoping; Wang Yongli.
An Active Constraints Identification Technique-based SSLE Algorithm and Its Convergence Analysis [J]. Acta mathematica scientia,Series A, 2007, 27(3): 535-540. |
[15] | GAO Zi-You, Ren Hua-Ling, HE Guo-Ping. A New Sequential Systems of Linear Equations Algorithm Without Strict Complementary Slackness [J]. Acta mathematica scientia,Series A, 2004, 24(3): 275-284. |