Acta mathematica scientia,Series A ›› 2023, Vol. 43 ›› Issue (4): 1221-1243.
Previous Articles Next Articles
He Xuyang(),Mao Mingzhi*(),Zhang Tengfei
Received:
2022-06-22
Revised:
2023-02-14
Online:
2023-08-26
Published:
2023-07-03
Contact:
Mingzhi Mao
E-mail:1202010933@cug.edu.cn;mingzhi-mao@163.com
Supported by:
CLC Number:
He Xuyang,Mao Mingzhi,Zhang Tengfei. Existence and Stability of a Class of Impulsive Neutral Stochastic Functional Differential Equations with Poisson Jump[J].Acta mathematica scientia,Series A, 2023, 43(4): 1221-1243.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] | Hale J K, Lunel S M V. Introduction to Functional-Differential Equations. Applied Mathematical Sciences, New York: Springer-Verlag, 1993 |
[2] |
Liu K. The fundamental solution and its role in the optimal control of infinite dimensional neutral systems. Appl Math Optim, 2009, 60(1): 1-38
doi: 10.1007/s00245-009-9065-1 |
[3] |
Wu S J, Meng X Z. Boundedness of nonlinear differential systems with impulsive effect on random moments. Acta Math Appl Sin Engl Ser, 2004, 20(1): 147-154
doi: 10.1007/s10255-004-0157-z |
[4] |
Wu F K, Mao X R, Szpruch L. Almost sure exponential stability of numerical solutions for stochastic delay differential equations. Numer Math, 2010, 115(4): 681-697
doi: 10.1007/s00211-010-0294-7 |
[5] | 沈轶, 张玉民, 廖晓昕. 中立型随机泛函微分方程的稳定性. 数学物理学报, 2005, 25(3): 323-330 |
Shen Y, Zhang Y M, Liao X X. Stability for neutral stochastic functional differential equations. Acta Math Sci, 2005, 25(3): 323-330 | |
[6] | 崔静, 梁秋菊, 毕娜娜. 分数布朗运动驱动的带脉冲的中立性随机泛函微分方程的渐近稳定. 数学物理学报, 2019, 39(3): 570-581 |
Cui J, Liang Q J, Bi N N. Asymptotic stability of impulsive neutral stochastic functional differential equation driven by fractional Brownian motion. Acta Math Sci, 2019, 39(3): 570-581 | |
[7] |
Song Y, Zeng Z. Razumikhin-type theorems on th moment boundedness of neutral stochastic functional differential equations with Makovian switching. J Franklin Inst B, 2018, 355(5): 8296-8312
doi: 10.1016/j.jfranklin.2018.09.019 |
[8] |
Chang M. On Razumikhin-type stability conditions for stochastic functional differential equations. Math Modelling, 1984, 5(5): 299-307
doi: 10.1016/0270-0255(84)90007-1 |
[9] | 沈轶, 廖晓昕. 随机中立型泛函微分方程指数稳定的Razumikhin型定理. 科学通报, 1998, 21: 2272-2275 |
Shen Y, Liao X X. The Razumikhin type theorem for exponential stability of stochastic neutral type functional differential equations. Chinese Science Bulletin, 1998, 21: 2272-2275 | |
[10] | Ren Y, Xia N. Existence, uniqueness and stability of the solutions to neutral stochastic functional differential equations with infinite delay. Appl Math Comput, 2008, 210(1): 72-79 |
[11] | Yang Z, Xu D. Stability analysis and design of impulsive control systems with time delay. IEEE Trans Automat Control, 2007, 52(8): 48-54 |
[12] | Guo Y, Zhu Q, Wang F. Stability analysis of impulsive stochastic functional differential equations. Commun Nonlinear Sci Numer Simul, 2020, 82(C): 5-13 |
[13] |
Zhao X. Mean square Hyers-Ulam stability of stochastic differential equations driven by Brownian motion. Adv Difference Equ, 2016, 2016(1): 271
doi: 10.1186/s13662-016-1002-4 |
[14] |
Li S, Shu L X, Shu X B, Xu F. Existence and Hyers-Ulam stability of random impulsive stochastic functional differential equations with finite delays. Stochastic, 2019, 91(6): 857-872
doi: 10.1080/17442508.2018.1551400 |
[15] | Ferhat M, Blouhi T. Existence and uniqueness results for systems of impulsive functional stochastic differential equations driven by fractional Brownian motion with multiple delay. Topol Methods Nonlinear Anal, 2018, 52: 449-476 |
[16] | Wu F, Yin G, Mei H. Stochastic functional differential equations with infinite delay: existence and uniqueness of solutions, solution maps, Markov properties, and ergodicity. J Diff Equ, 2017, 62(3): 1226-1252 |
[17] | Banupriya K, Anguraj A. Successive approximation of neutral functional impulsive stochastic differential equations with Poisson jumps. Dyn Contin Discrete Impuls Syst Ser B Appl and Algorithms, 2021, 28: 215-229 |
[18] |
Boufoussi B, Hajji S. Successive approximation of neutral functional stochastic differential equations in Hilbert spaces. Ann Math Blaise Pascal, 2010, 17(1): 183-197
doi: 10.5802/ambp.282 |
[19] |
Chen G, van Gaans O, Lunel S V. Existence and exponential stability of a class of impulsive neutral stochastic partial differential equations with delays and Poisson jumps. Statist Probab Lett, 2018, 141: 7-18
doi: 10.1016/j.spl.2018.05.017 |
[20] |
Deng S F, Shu X B, Mao J Z. Existence and exponential stability for impulsive neutral stochastic functional differential equations driven by fBm with noncompact semigroup via Mönch fixed point. J Math Anal Appl, 2018, 467(1): 398-420
doi: 10.1016/j.jmaa.2018.07.002 |
[21] |
Guo Y C, Chen M Q, Shu X B, Xu F. The existence and Hyers-Ulam stability of solution for almost periodical fractional stochastic differential equation with fBm. Stoch Anal Appl, 2021, 39(4): 643-666
doi: 10.1080/07362994.2020.1824677 |
[22] |
Faizullah F, Zhu Q, Ullah R. The existence-uniqueness and exponential estimate of solutions for stochastic functional differential equations driven by G-Brownian motion. Math Methods Appl Sci, 2021, 44: 1639-1650
doi: 10.1002/mma.v44.2 |
[23] |
Xiao G, Wang J, O'Regan D. Existence and stability of solutions to neutral conformable stochastic functional differential equations. Qual Theory Dyn Syst, 2022, 21(1): 7-22
doi: 10.1007/s12346-021-00538-x |
[24] | Tan J G, Tan Y H, Guo Y F, Feng J F. Almost sure exponential stability of numerical solutions for stochastic delay Hopfield neural networks with jumps. Phys A: Statist Mech Appl, 2020, 545: 37-82 |
[25] | Pazy A. Semigroups of Linear Operators and Applications to Partial Differential Equations. Appl Math Sci vol. New York: Springer Verlag, 1983 |
[26] | Da Prato G, Zabczyk J. Stochastic Equations in Infinite Dimensions. Cambridge: Cambridge University Press, 1992, 45 |
[27] |
Luo Q, Mao X, Shen Y. New criteria on exponential stability of neutral stochastic differential delay equations. Syst Control Lett, 2006, 55(10): 826-834
doi: 10.1016/j.sysconle.2006.04.005 |
[28] | Li R, Pang W, Leung P. Exponential stability of numerical solutions to stochastic delay Hopfield neural networks. Appl Math Comput, 2009, 73(4): 920-926 |
[29] |
Rathinasamy A. The split-step $\theta $-methods for stochastic delay Hopfield neural networks. Appl Math Model, 2021, 36: 3477-3485
doi: 10.1016/j.apm.2011.10.020 |
[30] |
Jiang F, Shen Y. Stability in the numerical simulation of stochastic delayed Hopfield neural networks. Neural Comput Appl, 2013, 22(7/8): 1493-1498
doi: 10.1007/s00521-012-0935-0 |
[31] | Liu L, Zhu Q. Almost sure exponential of numerical solutions to stochastic delay Hopfield neural networks. Appl Math Comput, 2015, 266: 698-712 |