Acta mathematica scientia,Series A ›› 2023, Vol. 43 ›› Issue (3): 657-668.
Qian Jinhua1,*(),Bian Jinxin1,Fu Xueshan2
Received:
2022-05-12
Revised:
2023-02-06
Online:
2023-06-26
Published:
2023-06-01
Contact:
Jinhua Qian
E-mail:qianjinhua@mail.neu.edu.cn
Supported by:
CLC Number:
Qian Jinhua,Bian Jinxin,Fu Xueshan. Structure Expression Form of Isotropic Growth Surface[J].Acta mathematica scientia,Series A, 2023, 43(3): 657-668.
[1] |
Pollack J, Hubickyj O, Bodenheimer P, Lissauer J, Podolak M, Greenzweig Y. Formation of the giant planets by concurrent accretion of solids and gas. Icarus, 1996, 124(1): 62-85
doi: 10.1006/icar.1996.0190 |
[2] | Fournier M, Bailleres H, Chanson B. Tree biomechanics: growth, cumulative prestresses, and reorientations. Biomimetics, 1994, 2: 229-251 |
[3] |
Hodge N, Papadopoulos P. Continuum modeling and numerical simulation of cell motility. J Math Biol, 2012, 64(7): 1253-1279
doi: 10.1007/s00285-011-0446-0 pmid: 21710139 |
[4] |
Tsui Y C, Clyne T W. An analytical model for predicting residual stresses in progressively deposited coatings. Part 1: planar geometry. Thin Solid Films, 1997, 306(1): 23-33
doi: 10.1016/S0040-6090(97)00199-5 |
[5] | Moseley H. On the geometrical forms of turbinated and discoid shells. Phil Trans R Soc Lond, 1838, 128: 351-370 |
[6] | Thompson D. On Growth and Form. London: Cambridge University Press, 1942 |
[7] |
Illert C. Formulation and solution of the classical problem: II. Tubular three dimensional surfaces. Nuovo Cimento, 1989, 11: 761-780
doi: 10.1007/BF02451562 |
[8] |
Cowin S C. Bone stress adaptation models. J Biomech Eng, 1993, 115: 528-533
doi: 10.1115/1.2895535 |
[9] |
Huiskes R, Hollister S J. From structure to process, from organ to cell: recent developments of FE-analysis in orthopedic biomechanics. J Biomech Eng, 1993, 115: 520-527
doi: 10.1115/1.2895534 |
[10] | Illert C. Formulation and solution of the classical problem: I. Seashell geometry. Nuovo Cimento, 1987, 9: 791-814 |
[11] |
Yilmaz S, Ünlütürk Y. Contributions to differential geometry of isotropic curves in the complex space ![]() doi: 10.1016/j.jmaa.2016.02.072 |
[12] |
Qian J H, Yin P, Fu X S, Wang H Z. Representations of rectifying isotropic curves and their centrodes in complex 3-space. Mathematics, 2021, 9: 1451
doi: 10.3390/math9121451 |
[13] |
Qian J H, Kim Y H. Some isotropic curves and representation in complex space ![]() doi: 10.4134/BKMS.2015.52.3.963 |
[1] | Yihong Hao,An Wang. Kähler Immersions of Pseudoconvex Hartogs Domains into Complex Space Forms [J]. Acta mathematica scientia,Series A, 2020, 40(6): 1511-1524. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 199
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 102
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||||||
Discussed |
|