Acta mathematica scientia,Series A ›› 2023, Vol. 43 ›› Issue (1): 219-237.
Previous Articles Next Articles
Received:
2022-05-13
Revised:
2022-08-05
Online:
2023-02-26
Published:
2023-03-07
Supported by:
CLC Number:
Lin Jie, Wang Tianyi. Well-Posedness and Convergence Rates of Three-Dimensional Incompressible Euler Flows in Axisymmetric Nozzles with Symmetric Body[J].Acta mathematica scientia,Series A, 2023, 43(1): 219-237.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] | Badiani T V. Existence of steady symmetric vortex pairs on a planar domain with an obstacle. Mathematical Proceedings of the Cambridge Philosophical Society, 2000, 132(2): 365-384 |
[2] | Burton G R. Steady symmetric vortex pairs and rearrangements. Proceedings of the Royal Society of Edinburgh Section a Mathematics, 1988, 108(3/4): 269-290 |
[3] | Burton G R. Variational problems on classes of rearrangements and multiple configurations for steady vortices. Annales De Linstitut Henri Poincare, 1989, 6(4): 295-319 |
[4] |
Elcrat A R, Miller K G. Steady vortex flows with circulation past asymmetric obstacles. Communications in Partial Differential Equations, 1987, 12(10): 1095-1115
doi: 10.1080/03605308708820520 |
[5] | Miller E. Rearrangements in steady vortex flows with circulation. Proceedings of the American Mathematical Society, 1991, 111(4): 1051-1055 |
[6] |
Ambrosetti A, Struwe M. Existence of steady vortex rings in an ideal fluid. Archive for Rational Mechanics and Analysis, 1989, 108(2): 97-109
doi: 10.1007/BF01053458 |
[7] |
Cao D M, Liu Z, Wei J. Regularization of point vortices for the Euler equation in dimension two. Archive for Rational Mechanics and Analysis, 2012, 212(1): 179-217
doi: 10.1007/s00205-013-0692-y |
[8] |
Cao D M, Peng S J, Yan S. Planar vortex patch problem in incompressible steady flow. Advances in Mathematics, 2015, 270: 263-301
doi: 10.1016/j.aim.2014.09.027 |
[9] |
Berger M S, Fraenkel L E. Nonlinear desingularization in certain free-boundary problems. Communications in Mathematical Physics, 1980, 77(2): 149-172
doi: 10.1007/BF01982715 |
[10] |
Li G, Yan S, Yang J. An elliptic problem related to planar vortex pairs. SIAM Journal on Mathematical Analysis, 2005, 36(5): 1444-1460
doi: 10.1137/S003614100343055X |
[11] |
Ni W M. On the existence of global vortex rings. Journal D'analyse Mathématique, 1980, 37(1): 208-247
doi: 10.1007/BF02797686 |
[12] | Bers L. Mathematical Aspects of Subsonic and Transonic Gas Dynamics. New York: John Wiley and Sons, 1958 |
[13] |
Xie C J, Xin Z P. Global subsonic and subsonic-sonic flows through infinitely long nozzles. Indiana University Mathematics Journal, 2007, 56(6): 2991-3023
doi: 10.1512/iumj.2007.56.3108 |
[14] |
Xie C J, Xin Z P. Global subsonic and subsonic-sonic flows through infinitely long axially symmetric nozzles. Journal of Differential Equations, 2010, 248(11): 2657-2683
doi: 10.1016/j.jde.2010.02.007 |
[15] |
Du L L, Xin Z P, Yan W. Subsonic flows in a multi-dimensional nozzle. Archive for Rational Mechanics and Analysis, 2011, 201(3): 965-1012
doi: 10.1007/s00205-011-0406-2 |
[16] |
Xie C J, Xin Z P. Existence of global steady subsonic Euler flows through infinitely long nozzles. SIAM Journal on Mathematical Analysis, 2010, 42(2): 751-784
doi: 10.1137/09076667X |
[17] |
Du L L, Xie C J, Xin Z P. Steady subsonic ideal flows through an infinitely long nozzle with large vorticity. Communications in Mathematical Physics, 2014, 328(1): 327-354
doi: 10.1007/s00220-014-1951-y |
[18] |
Chen G Q, Huang F M, Wang T Y, et al. Steady Euler flows with large vorticity and characteristic discontinuities in arbitrary infinitely long nozzles. Advances in Mathematics, 2019, 346: 946-1008
doi: 10.1016/j.aim.2019.02.002 |
[19] |
Du L L, Duan B. Global subsonic Euler flows in an infinitely long axisymmetric nozzle. Journal of Differential Equations, 2011, 250(2): 813-847
doi: 10.1016/j.jde.2010.06.005 |
[20] |
Duan B, Luo Z. Three-dimensional full Euler flows in axisymmetric nozzles. Journal of Differential Equations, 2013, 254(7): 2705-2731
doi: 10.1016/j.jde.2013.01.008 |
[21] |
Duan B, Luo Z. Subsonic non-isentropic Euler flows with large vorticity in axisymmetric nozzles. Journal of Mathematical Analysis and Applications, 2015, 430(2): 1037-1057
doi: 10.1016/j.jmaa.2015.05.023 |
[22] | Duan B, Weng S K. Global smooth axisymmetric subsonic flows with nonzero swirl in an infinitely long axisymmetric nozzle. Ztschrift für angewandte Mathematik und Physik, 2018, 69(5): 1-17 |
[23] |
Deng X M, Wang T Y, Xiang W. Three-dimensional full Euler flows with nontrivial swirl in axisymmetric nozzles. SIAM Journal on Mathematical Analysis, 2018, 50(3): 2740-2772
doi: 10.1137/16M1107991 |
[24] | Shiffman M. On the existence of subsonic flows of a compressible fluid. Journal Rational Mechanics Analysis, 1952, 1: 605-652 |
[25] |
Bers L. Existence and uniqueness of a subsonic flow past a given profile. Communications on Pure and Applied Mathematics, 1954, 7(3): 441-504
doi: 10.1002/cpa.3160070303 |
[26] |
Bers L. Results and conjectures in the mathematical theory of subsonic and transonic gas flows. Communications on Pure and Applied Mathematics, 1954, 7(1): 79-104
doi: 10.1002/cpa.3160070107 |
[27] |
Finn R, Gilbarg D. Three-dimensional subsonic flows and asymptotic estimates for elliptic partial differential equations. Acta Mathematica, 1957, 98(1): 265-296
doi: 10.1007/BF02404476 |
[28] | 董光昌. 空间亚音速流及此边值问题在更高维情况的推广. 浙江大学学报, 1979, 1: 33-63 |
Dong G C. Three-dimensinal subsonic ows and their boundary value problems extended to higher dimensions. Journal of Zhejiang University, 1979, 1: 33-63 | |
[29] |
Chen C, Du L L, Xie C J, et al. Two dimensional subsonic Euler flows past a wall or a symmetric body. Archive for Rational Mechanics and Analysis, 2016, 221(2): 559-602
doi: 10.1007/s00205-016-0968-0 |
[30] | Ou B. An irrotational and incompressible flow around a body in space. Journal of Partial Differential Equations, 1994, 7(2): 160-170 |
[31] | Ma L, Xie C. Existence and optimal convergence rates of multi-dimensional subsonic potential flows through an infinitely long nozzle with an obstacle inside. Journal of Mathematica Physics, 2020, 61(7): 1-23 |
[32] | Ma L. The optimal convergence rates of non-isentropic subsonic Euler flows through the infinitely long three-dimensional axisymmetric nozzles. Mathematical Methods in the Applied Sciences, 2020, 48(10): 6553-6565 |
[33] | Gilbarg D, Trudinger N. Elliptic Partial Differential Equations of Second Order. Berlin: Springer, 1983 |
[34] |
Chen G Q, Deng X M, Xiang W. Global steady subsonic flows through infinitely long nozzles for the full Euler equations. SIAM Journal on Mathematical Analysis, 2012, 44(4): 2888-2919
doi: 10.1137/11085325X |
[1] | Xiangyu Xiao,Zhilin Pu. The Global Attractors of Cahn-Hilliard-Brinkman System [J]. Acta mathematica scientia,Series A, 2022, 42(4): 1027-1040. |
[2] | Baishun Lai,Qing Luo. Well-Posedness of a Fourth Order Parabolic Equation Modeling MEMS [J]. Acta mathematica scientia,Series A, 2021, 41(6): 1718-1733. |
[3] | Dandan Sun,Yingke Li,Zhidong Teng,Tailei Zhang. Analysis of the Stability for Measles Epidemic Model with Age-Structured [J]. Acta mathematica scientia,Series A, 2021, 41(6): 1950-1968. |
[4] | Xuanxuan Xi,Mimi Hou,Xianfeng Zhou. Invariance Sets and Well-Posedness for the Weak Solution of Non-Autonomous Caputo Fractional Evolution Equation [J]. Acta mathematica scientia,Series A, 2021, 41(1): 149-165. |
[5] | Juan Wang,Jie Zhao. Homogenization of the Oscillating Robin Mixed Boundary Value Problems [J]. Acta mathematica scientia,Series A, 2021, 41(1): 81-90. |
[6] | Juan Wang,Jie Zhao. Homogenization of Higher-Order Equations with Mixed Boundary Condition [J]. Acta mathematica scientia,Series A, 2020, 40(4): 925-933. |
[7] | Juan Wang,Jie Zhao. Homogenization of the Neumann Boundary Value Problem: The Sharper W1, p Estimate [J]. Acta mathematica scientia,Series A, 2019, 39(5): 1115-1124. |
[8] | Cai Gang. The Well-Posedness of Degenerate Differential Equations with Finite Delay in Banach Spaces [J]. Acta mathematica scientia,Series A, 2018, 38(2): 264-275. |
[9] | Marko Kostić, Li Chenggang, Li Miao. Abstract Multi-Term Fractional Differential Equations with Riemann-Liouville Derivatives [J]. Acta mathematica scientia,Series A, 2016, 36(4): 601-622. |
[10] | QU Feng-Long, LI Xi-Liang. The Interior Transmission Problem for Isotropic Maxwell Equations and Some Estimates on the Index of Refraction [J]. Acta mathematica scientia,Series A, 2013, 33(6): 1178-1188. |
[11] | ZHU Li, XIA Fu-Quan . Levitin-Polyak Well-posedness of Generalized Mixed Variational Inequalities [J]. Acta mathematica scientia,Series A, 2012, 32(4): 633-643. |
[12] | Zhu Zhongyi, Wei Bocheng. Strong Uniform Convergence Rates for Nonparametric Estimations of Conditional Functional and its Derivatives [J]. Acta mathematica scientia,Series A, 1998, 18(4): 394-401. |
|