Refined Lower Bound for Sums of Eigenvalues of the Laplace Operator
He Yue1,3,*(),Ruan Qihua2,3()
1Institute of Mathematics, School of Mathematics Sciences, Nanjing Normal University, Nanjing 210023 2Department of Mathematics, Putian University, Fujian Putian 351100 3Key Laboratory of Applied Mathematics (Putian University), Fujian Province University, Fujian Putian 351100
Weyl H. Das asymptotische verteilungsgesetz der eigenwerte linearer partieller differentialgleichungen. Math Ann, 1912, 71: 441-479
doi: 10.1007/BF01456804
[2]
Pólya G. On the eigenvalues of vibrating membranes. Proc Lond Math Soc, 1961, 11: 419-433
[3]
Li P, Yau S T. On the Schrödinger equation and the eigenvalue problem. Comm Math Phys, 1983, 88: 309-318
doi: 10.1007/BF01213210
[4]
Berezin F A. Covariant and contravariant symbols of operators. Izv Akad Nauk SSSR Ser Mat, 1972, 36: 1134-1167
[5]
Lieb E. The number of bound states of one-body Schroedinger operators and the Weyl problem. Proc Sym Pure Math, 1980, 36: 241-252
[6]
Laptev A. Dirichlet and Neumann eigenvalue problems on domains in Euclidean spaces. J Funct Anal, 1997, 151: 531-545
doi: 10.1006/jfan.1997.3155
[7]
Melas A D. A lower bound for sums of eigenvalues of the Laplacian. Proc Amer Math Soc, 2002, 131: 631-636
doi: 10.1090/S0002-9939-02-06834-X
[8]
Cheng Q M, Yang H C. Estimates for eigenvalues on Riemannian manifolds. J Differ Equations, 2009, 247: 2270-2281
doi: 10.1016/j.jde.2009.07.015
[9]
Yolcu S Y, Yolcu T. Multidimensional lower bounds for the eigenvalues of Stokes and Dirichlet Laplacian operators. J Math Phys, 2012, 53: 043508
doi: 10.1063/1.3701978
[10]
Yolcu S Y, Yolcu T. Refined eigenvalue bounds on the Dirichlet fractional Laplacian. J Math Phys, 2015, 56: 1-12
[11]
Davies E B, Safalov Y. Spectral Theory and Geometry. Cambridge: Cambridge University Press, 1999
[12]
Wei G X, Sun H J, Zeng L Z. Lower bounds for fractional Laplacian eigenvalues. Commun Contemp Math, 2014, 16: 1450032
doi: 10.1142/S0219199714500321