Acta mathematica scientia,Series A ›› 2022, Vol. 42 ›› Issue (6): 1849-1860.
Previous Articles Next Articles
Received:
2022-01-07
Online:
2022-12-26
Published:
2022-12-16
Contact:
Linfei Nie
E-mail:lfnie@163.com;nielinfei@xju.com
Supported by:
CLC Number:
Zhenxiang Hu,Linfei Nie. Analysis of a Reaction-Diffusion Epidemic Model with Horizontal Transmission and Environmental Transmission[J].Acta mathematica scientia,Series A, 2022, 42(6): 1849-1860.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
1 |
靖晓洁, 赵爱民, 刘桂荣. 考虑部分免疫和环境传播的麻疹传染病模型的全局稳定性. 数学物理学报, 2019, 39A (4): 909- 917
doi: 10.3969/j.issn.1003-3998.2019.04.018 |
Jing X J , Zhao A M , Liu G R . Global stability of a measles epidemic model with partial immunity and environmental transmission. Acta Math Sci, 2019, 39A (4): 909- 917
doi: 10.3969/j.issn.1003-3998.2019.04.018 |
|
2 |
Joh R I , Wang H , Weiss H , Weitz J S . Dynamics of indirectly transmitted infectious diseases with immunological threshold. B Math Biol, 2009, 71 (4): 845- 862
doi: 10.1007/s11538-008-9384-4 |
3 |
Magal P , Webb G , Wu Y X . On a vector-host epidemic model with spatial structure. Nonlinearity, 2018, 31 (12): 5589- 5614
doi: 10.1088/1361-6544/aae1e0 |
4 |
Wang J L , Wang J . Analysis of a reaction-diffusion cholera model with distinct dispersal rates in the human population. J Dyn Differ Equ, 2021, 33 (1): 549- 575
doi: 10.1007/s10884-019-09820-8 |
5 |
杨瑜. 一类非局部时滞的SVIR反应扩散模型的全局吸引性. 数学物理学报, 2021, 41A (6): 1864- 1870
doi: 10.3969/j.issn.1003-3998.2021.06.023 |
Yang Y . Global attractivity of a nonlocal delayed and diffusive SVIR model. Acta Math Sci, 2021, 41A, 1864- 1870
doi: 10.3969/j.issn.1003-3998.2021.06.023 |
|
6 |
Dwyer G . Density dependence and spatial structure in the dynamics of insect pathogens. The American Naturalist, 1994, 143 (4): 533- 562
doi: 10.1086/285619 |
7 |
Wu Y X , Zou X F . Dynamics and profiles of a diffusive host-pathogen system with distinct dispersal rates. J Differ Equations, 2018, 264 (8): 4989- 5024
doi: 10.1016/j.jde.2017.12.027 |
8 |
Shi Y , Gao J G , Wang J L . Analysis of a reaction-diffusion host-pathogen model with horizontal transmission. J Math Anal Appl, 2020, 481 (1): 123481
doi: 10.1016/j.jmaa.2019.123481 |
9 | Smith H L . Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems. Providence, RI: American Mathematical Society, 1995, |
10 | Martin R H , Smith H L . Abstract functional differential equations and reaction-diffusion systems. Tran Amer Math Soc, 1990, 321 (1): 1- 44 |
11 | Zhao X Q . Dynamical Systems in Population Biology. New York: Springer, 2003 |
12 |
Lou Y , Zhao X Q . A reaction-diffusion malaria model with incubation period in the vector population. J Math Biol, 2011, 62 (4): 543- 568
doi: 10.1007/s00285-010-0346-8 |
13 |
Thieme H R . Spectral bound and reproduction number for infinite-dimensional population structure and time heterogeneity. SIAM J Appl Math, 2009, 70 (1): 188- 211
doi: 10.1137/080732870 |
14 |
Wang W D , Zhao X Q . Basic reproduction number for reaction-diffusion epidemic models. SIAM J Appl Dyn Syst, 2012, 11 (4): 1652- 1673
doi: 10.1137/120872942 |
15 | Thieme H R . Convergence results and a Poincare-Bendixson trichotomy for asymptotically autonomous differential equations. J Math Biol, 1992, 30 (7): 755- 763 |
16 |
Hsu S B , Jiang J F , Wang F B . On a system of reaction-diffusion equations arising from competition with internal storage in an unstirred chemostat. J Differ Equations, 2010, 248 (10): 2470- 2496
doi: 10.1016/j.jde.2009.12.014 |
17 | Protter M H , Weinberger H F . Maximum Principles in Differential Equations. New York: Springer-Verlag, 1984 |
18 |
Smith H L , Zhao X Q . Robust persistence for semidynamical systems. Nonlinear Anal, 2001, 47 (9): 6169- 6179
doi: 10.1016/S0362-546X(01)00678-2 |
19 |
Magal P , Zhao X Q . Global attractors and steady states for uniformly persistent dynamical systems. SIAM J Math Anal, 2005, 37 (1): 251- 275
doi: 10.1137/S0036141003439173 |
[1] | Zhanping Ma,Haifeng Huo,Hong Xiang. Dynamics and Patterns for a Diffusive Leslie-Gower Predator-Prey Model with Michaelis-Menten Type Harvesting in Prey [J]. Acta mathematica scientia,Series A, 2022, 42(5): 1575-1591. |
[2] | Kai Wang,Hongyong Zhao. Traveling Wave of a Reaction-Diffusion Dengue Epidemic Model with Time Delays [J]. Acta mathematica scientia,Series A, 2022, 42(4): 1209-1226. |
[3] | Tailei Zhang,Junli Liu,Mengjie Han. Dynamics of an Anthrax Epidemiological Model with Time Delay and Seasonality [J]. Acta mathematica scientia,Series A, 2022, 42(3): 851-866. |
[4] | Dandan Sun,Yingke Li,Zhidong Teng,Tailei Zhang. Analysis of the Stability for Measles Epidemic Model with Age-Structured [J]. Acta mathematica scientia,Series A, 2021, 41(6): 1950-1968. |
[5] | Lixiang Feng,Defen Wang. Global Stability of an Epidemic Model with Quarantine and Incomplete Treatment [J]. Acta mathematica scientia,Series A, 2021, 41(4): 1235-1248. |
[6] | Xiaojie Jing, Aimin Zhao, Guirong Liu. Global Stability of a Measles Epidemic Model with Partial Immunity and Environmental Transmission [J]. Acta mathematica scientia,Series A, 2019, 39(4): 909-917. |
[7] | Zhang Liping, Zhao Yu, Yuan Sanling. Threshold Dynamical Behaviors of a Stochastic SIS Epidemic Model with Nonlinear Incidence Rate [J]. Acta mathematica scientia,Series A, 2018, 38(1): 197-208. |
[8] | Wei Aiju, Zhang Xinjian, Wang Junyi, Li Kezan. Dynamics Analysis of an Ebola Epidemic Model [J]. Acta mathematica scientia,Series A, 2017, 37(3): 577-592. |
[9] | Gui Zhanji; Jia Jing; Ge Weigao. Global Stability of Single-species Diffusion Models with Time Delay [J]. Acta mathematica scientia,Series A, 2007, 27(3): 496-505. |
[10] | LOU Jie, MA Zhi-En. Stability of Some Epidemic Models |with Passive Immunity [J]. Acta mathematica scientia,Series A, 2003, 23(3): 357-368. |
[11] |
WEN Xian-Zhang.
The Uniform Persistence of PredatorPrey Systems with Delays [J]. Acta mathematica scientia,Series A, 2003, 23(1): 96-105. |
|