Acta mathematica scientia,Series A ›› 2022, Vol. 42 ›› Issue (6): 1836-1848.
Previous Articles Next Articles
Received:
2021-09-29
Online:
2022-12-26
Published:
2022-12-16
Contact:
Rui Xu
E-mail:rxu88@163.com
Supported by:
CLC Number:
Rui Xu,Yan Yang. Dynamics of an HTLV-I Infection Model with Delayed and Saturated CTL Immune Response and Immune Impairment[J].Acta mathematica scientia,Series A, 2022, 42(6): 1836-1848.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
1 | Cann A J, Chen Isy. Human T-cell Leukemia virus type I and II//Fields B N, Knipe D M, Howley P M. Field Virology. Philadelphia: Lippincott-Raven Publishers, 1996: 1849-1880 |
2 |
Bangham C R M . The immune response to HTLV-I. Curr Opin Immunol, 2000, 12, 397- 402
doi: 10.1016/S0952-7915(00)00107-2 |
3 |
Jacobson S . Immunopathogenesis of human T cell lymphotropic virus type I-associated neurologic disease. J Infect Dis, 2002, 186, S187- S192
doi: 10.1086/344269 |
4 |
Asquith B , Bangham C R M . Quantifying HTLV-I dynamics. Immunol Cell Biol, 2007, 85, 280- 286
doi: 10.1038/sj.icb.7100050 |
5 |
Beretta E , Kuang Y . Geometric stability switch criteria in delay differential systems with delay dependent parameters. SIAM J Math Anal, 2002, 33, 1144- 1165
doi: 10.1137/S0036141000376086 |
6 |
Asquith B , Bangham C R M . How does HTLV-I persist despite a strong cell-mediated immune response?. Trends Immunol, 2008, 29, 4- 11
doi: 10.1016/j.it.2007.09.006 |
7 |
Khajanchi S , Bera S , Roy T K . Mathematical analysis of the global dynamics of a HTLV-I infection model, considering the role of cytotoxic T-lymphocytes. Math Comput Simul, 2021, 180, 354- 378
doi: 10.1016/j.matcom.2020.09.009 |
8 | Tian X , Xu R . Global stability and hopf bifurcation of an HIV-1 infection model with saturation incidence and delayed CTL immune response. Appl Math Comput, 2014, 237, 146- 154 |
9 |
Li M Y , Shu H . Multiple stable periodic oscillations in a mathematical model of CTL response to HTLV-I infection. Bull Math Biol, 2011, 73, 1774- 1793
doi: 10.1007/s11538-010-9591-7 |
10 |
Gómez-Acevedo H , Li M Y , Jacobson S . Multistability in a model for CTL response to HTLV-I infection and its implications to HAM/TSP development and prevention. Bull Math Biol, 2010, 72, 681- 696
doi: 10.1007/s11538-009-9465-z |
11 |
Wang A , Li M Y . Viral dynamics of HIV-1 with CTL immune response. Discrete Contin Dyn Syst-Ser B, 2021, 26, 2257- 2272
doi: 10.3934/dcdsb.2020212 |
12 |
Wang S , Song X , Ge Z . Dynamics analysis of a delayed viral infection model with immune impairment. Appl Math Model, 2011, 35, 4877- 4886
doi: 10.1016/j.apm.2011.03.043 |
13 |
Rosenberg E S , Altfeld M , Poon S H , et al. Immune control of HIV-1 after early treatment of acute infection. Nature, 2000, 407, 523- 526
doi: 10.1038/35035103 |
14 |
Regoes R R , Wodarz D , Nowak M A . Virus dynamics: the effect of target cell limitation and immune responses on virus evolution. J Theor Biol, 1998, 191, 451- 462
doi: 10.1006/jtbi.1997.0617 |
15 | Hale J K, Verduyn Lunel S M. Introduction to Functional Differential Equations. New York: Springer, 1993 |
16 | van den Driessche P , Watmough J . Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math Biosci, 2002, 180 (1/2): 29- 48 |
17 | Yan X, Li W. Stability and bifurcation in a simplified four-neuron BAM neural network with multiple delays. Discrete Dyn Nat Soc, 2006, 2006: Article ID 032529 |
18 |
Song Y , Yuan S . Bifurcation analysis in a predator-prey system with time delay. Nonlinear Anal: Real World Appl, 2006, 7, 265- 284
doi: 10.1016/j.nonrwa.2005.03.002 |
19 |
Wu J . Symmetric functional differential equations and neural networks with memory. Trans Amer Math Soc, 1998, 350, 4799- 4838
doi: 10.1090/S0002-9947-98-02083-2 |
20 |
Song C , Xu R . Mathematical analysis of an HTLV-I infection model with the mitosis of CD4+ T cells and delayed CTL immune response. Nonlinear Anal-Model Control, 2021, 26, 1- 20
doi: 10.15388/namc.2021.26.21050 |
21 | Martcheva M. An Introduction to Mathematical Epidemiology. New York: Springer, 2015 |
[1] | Meng Deng,Rui Xu. Stability Analysis of an HIV Infection Dynamic Model with CTL Immune Response and Immune Impairment [J]. Acta mathematica scientia,Series A, 2022, 42(5): 1592-1600. |
[2] | Daoxiang Zhang,Ben Li,Dandan Chen,Yating Lin,Xinmei Wang. Hopf Bifurcation for a Fractional Differential-Algebraic Predator-Prey System with Time Delay and Economic Profit [J]. Acta mathematica scientia,Series A, 2022, 42(2): 570-582. |
[3] | Yue Sun,Daoxiang Zhang,Wen Zhou. The Influence of Fear Effect on Stability Interval of Reaction-Diffusion Predator-Prey System with Time Delay [J]. Acta mathematica scientia,Series A, 2021, 41(6): 1980-1992. |
[4] | Jingnan Wang,Dezhong Yang. Stability and Bifurcation of a Pathogen-Immune Model with Delay and Diffusion Effects [J]. Acta mathematica scientia,Series A, 2021, 41(4): 1204-1217. |
[5] | Gaihui Guo,Xiaohui Liu. Hopf Bifurcation and Stability for an Autocatalytic Reversible Biochemical Reaction Model [J]. Acta mathematica scientia,Series A, 2021, 41(1): 166-177. |
[6] | Haiyin Li. Hopf Bifurcation of Delayed Density-Dependent Predator-Prey Model [J]. Acta mathematica scientia,Series A, 2019, 39(2): 358-371. |
[7] | Yang Jihua, Zhang Erli, Liu Mei. Dynamic Analysis and Chaos Control of a Finance System with Delayed Feedbacks [J]. Acta mathematica scientia,Series A, 2017, 37(4): 767-782. |
[8] | Zhou Jun. Turing Instability and Hopf Bifurcation of a Bimolecular Model with Autocatalysis and Saturation Law [J]. Acta mathematica scientia,Series A, 2017, 37(2): 366-373. |
[9] | Wang Heyuan. The Dynamical Behaviors and the Numerical Simulation of a Five-Mode Lorenz-Like System of the MHD Equations for a Two-Dimensional Incompressible Fluid on a Torus [J]. Acta mathematica scientia,Series A, 2017, 37(1): 199-216. |
[10] | Wan Aying, Yi Fengqi, Zheng Lifei. Hopf Bifurcation Analysis and Oscillatory Patterns of A Diffusive Gierer-Meinhardt Model [J]. Acta mathematica scientia,Series A, 2015, 35(2): 381-394. |
[11] | WANG Xue-Chen, WEI Jun-Jie. The Effect of Delay on a Diffusive Predator-Prey System with Ivlev-Type Functional Response [J]. Acta mathematica scientia,Series A, 2014, 34(2): 234-250. |
[12] |
Xu Weijian;.
Stability and Hopf Bifurcation of an SIS Model with Species Logistic Growth and Saturating Infect Rate [J]. Acta mathematica scientia,Series A, 2008, 28(3): 578-584. |
[13] | Wang Yuquan; Liu Laifu. On the Dynamics of a Food Chain with Monod-Haldane Functional Response [J]. Acta mathematica scientia,Series A, 2007, 27(1): 79-089. |
[14] | Wang Yuquan ;Jing Zhujun. Global Qualitative Analysis of a Food Chain Model [J]. Acta mathematica scientia,Series A, 2006, 26(3): 410-420. |
[15] | SONG Xin-Yu, XIAO Yan-Ni, CHEN Lan-Sun. Stability and Hopf Bifurcation of an Eco epidemiological Model with Delays [J]. Acta mathematica scientia,Series A, 2005, 25(1): 57-66. |
|