Acta mathematica scientia,Series A ›› 2022, Vol. 42 ›› Issue (3): 826-838.
Previous Articles Next Articles
Received:
2021-06-23
Online:
2022-06-26
Published:
2022-05-09
Contact:
Jianfang Gao
E-mail:09151108@163.com
Supported by:
CLC Number:
Ying Liu,Jianfang Gao. Oscillation Analysis of a Kind of Systems with Piecewise Continuous Arguments[J].Acta mathematica scientia,Series A, 2022, 42(3): 826-838.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
1 |
Cooke K L , Wiener J . Retarded differential equations with piecewise constant delays. J Math Anal Appl, 1984, 99, 265- 297
doi: 10.1016/0022-247X(84)90248-8 |
2 | Song M H , Liu M Z . Numerical stability and oscillation of the Runge-Kutta methods for equation $x'(t)=ax(t)+a_{0}x(M[\frac{t+N}{M}])$. Adv Difference Equa, 2012, 146, 1- 13 |
3 | Chen F . Oscillatory and asymptotic behaviour of odd order delay differential equations with impluses. J Math Sci, 2013, 15, 258- 273 |
4 |
Habibi S . Estimates on the dimension of an exponential attractor for a delay differential equation. Math Slovaca, 2014, 64, 1237- 1248
doi: 10.2478/s12175-014-0272-0 |
5 |
Á Garab , Pituk M , Stavroulakis I P . A sharp oscillation criterion for a linear delay differential equation. Appl Math Lett, 2019, 93, 58- 65
doi: 10.1016/j.aml.2019.01.042 |
6 | Durina J , Jadlovská I . A sharp oscillation result for second-order half-linear noncanonical delay differential equations. Electron J Qual Theory Differ Equa, 2020, 2020 (46): 1- 14 |
7 | Sethi A K , Tripathy A K . On oscillatory second order differential equations with variable delays. Palestine J Math, 2021, 3 (1): 11- 24 |
8 |
Pullan M C . Linear optimal control problems with piecewisw analytic solutions. J Math Anal Appl, 1996, 197, 207- 226
doi: 10.1006/jmaa.1996.0016 |
9 |
Shah S M , Wiener J . Advanced differential equations with piecewise constant argument deviations. Int J Math Sci, 1983, 6, 671- 703
doi: 10.1155/S0161171283000599 |
10 |
Song M H , Yang Z W , Liu M Z . Stability of $\theta$-methods for advanced differential equations with piecewise continuous arguments. Comput Math Appl, 2005, 49, 1295- 1301
doi: 10.1016/j.camwa.2005.02.002 |
11 |
Akhmet M U . On the reduction principle for differential equations with piecewise constant argument of generalized type. J Math Anal Appl, 2007, 336, 646- 663
doi: 10.1016/j.jmaa.2007.03.010 |
12 |
Ozturk I , Bozkurt F . Stability analysis of a population model with piecewisw constant arguments. Nonlinear Anal Real World Appl, 2011, 12, 1532- 1545
doi: 10.1016/j.nonrwa.2010.10.011 |
13 | Gao J F . Numerical oscillation and non-oscillation for differential equation with piecewise continuous arguments of mixed type. Appl Math Comput, 2017, 299, 16- 27 |
14 |
Wiener J , Cooke K L . Oscillations in systems of differential equations with piecewise constant argument. J Math Anal Appl, 1989, 137, 221- 239
doi: 10.1016/0022-247X(89)90286-2 |
15 |
Luo Z G , Shen J H . New results on oscillation for delay differential equations with piecewise constant argument. Comput Math Appl, 2003, 45, 1841- 1848
doi: 10.1016/S0898-1221(03)90005-8 |
16 |
Wang Q , Zhu Q Y , Liu M Z . Stability and oscillations of numerical solutions for differential equations with piecewise continuous arguments of alternately advanced and retarded type. J Comput Appl Math, 2011, 235, 1542- 1552
doi: 10.1016/j.cam.2010.08.041 |
17 | Zhang C , Li T , Saker S H . Oscillation of fourth order delay differential equations. J Math Sci, 2014, 201, 322- 335 |
18 |
Džurina J , Jadlovská I . A note on oscillation of second-order delay differential equations. Appl Math Lett, 2017, 69, 126- 132
doi: 10.1016/j.aml.2017.02.003 |
19 |
Grace S R , Jadlovská I , Zafer A . Oscillation criteria for odd-order nonlinear delay differential equations with a middle term. Math Methods Appl Sci, 2017, 40, 5147- 5160
doi: 10.1002/mma.4377 |
20 | Moaaz O , Mahmoud E E , Alharbi W R . Third-order neutral delay differential equations: New iterative criteria for oscillation. J Funct Spaces, 2020, 2020 (1): 1- 8 |
21 | Liu M Z , Gao J F , Yang Z W . Oscillation analysis of numerical solution in the $\theta$-methods for equation $x'(t)+ax(t)+a_1x([t-1])=0$. Appl Math Comput, 2007, 186, 566- 578 |
22 |
Liu M Z , Gao J F , Yang Z W . Preservation of oscillation of the Runge-Kutta method for equation $x'(t)+ax(t)+a_1x([t-1])=0$. Comput Math Appl, 2009, 58, 1113- 1125
doi: 10.1016/j.camwa.2009.07.030 |
23 |
Gao J F , Liu S M . Oscillation analysis of numerical solutions in the $\theta$-methods for differential equation of advanced type. Math Methods Appl Sci, 2015, 38, 5271- 5278
doi: 10.1002/mma.3458 |
24 |
Gao J F , Shi T T , Song F Y . Preservation of oscillation in the Runge-Kutta method for a type of advanced differential equation. Numer Funct Anal Optim, 2015, 36, 1420- 1430
doi: 10.1080/01630563.2015.1070863 |
25 | Györi I , Ladas G . Oscillation Theory of Delay Equations with Applications. Oxford: Clarendon Press, 1991: 32- 197 |
26 |
Song M H , Yang Z W , Liu M Z . Stability of $\theta$-methods for advanced differential equations with piecewise continuous arguments. Comput Math Appl, 2005, 49, 1295- 1301
doi: 10.1016/j.camwa.2005.02.002 |
[1] | Ping Zhang,Jiashan Yang,Guijiang Qin. Oscillation of Second-Order Nonlinear Nonautonomous Delay Dynamic Equations on Time Scales [J]. Acta mathematica scientia,Series A, 2022, 42(3): 839-850. |
[2] | Wenjuan Li,Huo Tang,Yuanhong Yu. Oscillation Criterion for Second Order Damped Differential Equation with a Sublinear Neutral Term [J]. Acta mathematica scientia,Series A, 2022, 42(1): 58-69. |
[3] | Zhiyu Zhang,Cheng Zhao,Yuyu Li. Oscillation of Second Order Delay Dynamic Equations with Superlinear Neutral Terms on Time Scales [J]. Acta mathematica scientia,Series A, 2021, 41(6): 1838-1852. |
[4] | Guijiang Qin,Jiashan Yang. Oscillation Theorems of Second-Order Variable Delay Dynamic Equations with Quasilinear Neutral Term [J]. Acta mathematica scientia,Series A, 2021, 41(5): 1492-1503. |
[5] | Zhiyu Zhang. Oscillation Criteria of Second-Order Generalized Emden-Fowler Delay Differential Equations with a Sub-Linear Neutral Term [J]. Acta mathematica scientia,Series A, 2021, 41(3): 811-826. |
[6] | Zhiyu Zhang,Feifei Song,Tongxing Li,Yuanhong Yu. Oscillation Criteria of Second Order Nonlinear Neutral Emden-Fowler Differential Equations with Damping [J]. Acta mathematica scientia,Series A, 2020, 40(4): 934-946. |
[7] | Zhaolin Yan,Jianfang Gao. Numerical Oscillation Analysis of the Mixed Type Impulsive Differential Equation [J]. Acta mathematica scientia,Series A, 2020, 40(4): 993-1006. |
[8] | Liping Luo,Zhenguo Luo,Yunhui Zeng. Oscillation Conditions of Certain Nonlinear Impulsive Neutral Parabolic Distributed Parameter Systems [J]. Acta mathematica scientia,Series A, 2020, 40(3): 784-795. |
[9] | Jimeng Li,Jiashan Yang. Philos-Type Criteria for Second-Order Delay Differential Equations with Nonlinear Neutral Term [J]. Acta mathematica scientia,Series A, 2020, 40(1): 169-186. |
[10] | Jimeng Li. Oscillation Analysis of Second-Order Generalized Emden-Fowler-Type Delay Differential Equations [J]. Acta mathematica scientia,Series A, 2019, 39(5): 1041-1054. |
[11] | Yanfang Mei,Youjun Wang. Three Types of Solutions for a Class of Nonlinear Schrödinger Equations [J]. Acta mathematica scientia,Series A, 2019, 39(5): 1087-1093. |
[12] | Zhiyu Zhang,Yuanhong Yu,Shuping Li,Shizhu Qiao. Oscillation of Second Order Nonlinear Differential Equations with Neutral Delay [J]. Acta mathematica scientia,Series A, 2019, 39(4): 797-811. |
[13] | Wenjuan Li,Shuhai Li,Yuanhong Yu. Oscillation of Second Order Nonlinear Neutral Differential Equations with Distributed Delay [J]. Acta mathematica scientia,Series A, 2019, 39(4): 812-822. |
[14] | Wang Huiling, Gao Jianfang. Oscillation Analysis of Analytical Solutions for a Kind of Nonlinear Neutral Delay Differential Equations with Several Delays [J]. Acta mathematica scientia,Series A, 2018, 38(4): 740-749. |
[15] | Zhang Xiaojian. Oscillation of Generalized Emden-Fowler Differential Equations with Nonlinear Neutral Term [J]. Acta mathematica scientia,Series A, 2018, 38(4): 728-739. |
|