Acta mathematica scientia,Series A ›› 2022, Vol. 42 ›› Issue (2): 583-593.
Previous Articles Next Articles
Received:
2021-01-29
Online:
2022-04-26
Published:
2022-04-18
Contact:
Changfeng Ma
E-mail:macf@fjnu.edu.cn
Supported by:
CLC Number:
Changfeng Ma,Feiyang Ma. The Improved Convergence Theorems of Modulus-Based Matrix Splitting Iteration Methods for a Class of Nonlinear Complementarity Problems with H-Matrices[J].Acta mathematica scientia,Series A, 2022, 42(2): 583-593.
1 |
Ferris M C , Pang J S . Engineering and economic applications of complementarity problems. SIAM Rew, 1997, 39 (4): 669- 713
doi: 10.1137/S0036144595285963 |
2 | Facchinei F , Pang J S . Finite-Dimentional Variational Inequalities and Complementarity Problems. New York: Springer, 2003 |
3 | Ortega J M , Rheinboldt W C . Iterative Solution of Nonlinear Equations in Several Variables. New York: Academic, 1970 |
4 |
Bai Z Z . Parallel nonlinear AOR method and its convergence. Comput Math Appl, 1996, 31 (2): 21- 31
doi: 10.1016/0898-1221(95)00190-5 |
5 | van Bokhoven W M G . Piecewise-linear Modelling and Analysis. Eindhoven: Proeschrift, 1981 |
6 |
Chen X , Ye Y . On smoothing methods for the ![]() ![]() doi: 10.1137/S1052623498335080 |
7 |
Bai Z Z . Modulus-based matrix splitting methods for linear complementarity problems. Numer Linear Algebra Appl, 2010, 17 (6): 917- 933
doi: 10.1002/nla.680 |
8 |
Zhang L L . Two-step modulus-based matrix splitting iteration method for linear complementarity problems. Numer Algorithms, 2011, 57 (1): 83- 99
doi: 10.1007/s11075-010-9416-7 |
9 |
Li W . A general modulus-based matrix splitting method for linear complementarity problems of ![]() doi: 10.1016/j.aml.2013.06.015 |
10 |
Zheng N , Yin J F . Accelerated modulus-based matrix splitting iteration methods for linear complementarity problem. Numer Algorithms, 2013, 64 (2): 245- 262
doi: 10.1007/s11075-012-9664-9 |
11 |
Zhang L L . Two-stage multisplitting iteration methods using modulus-based matrix splitting as inner iteration for linear complementarity problems. J Optim Theory Appl, 2014, 160 (1): 189- 203
doi: 10.1007/s10957-013-0362-0 |
12 |
Ke Y F , Ma C F . On the convergence analysis of two-step modulus-based matrix splitting iteration method for linear complementarity problems. Comp Math Appl, 2014, 243: 413- 418
doi: 10.1016/j.amc.2014.05.119 |
13 |
Zheng H , Li W , Vong S . A relaxation modulus-based matrix splitting iteration method for solving linear complementarity problems. Numer Algorithms, 2017, 74: 137- 152
doi: 10.1007/s11075-016-0142-7 |
14 |
Bai Z Z . On the monotone convergence of matrix multisplitting relaxation methods for the linear complementarity problem. IMA J Numer Anal, 1998, 18: 509- 518
doi: 10.1093/imanum/18.4.509 |
15 | Bai Z Z , Evans D J . Matrix multisplitting methods with applications to linear complementarity problems: Parallel synchronous and chaotic methods. Reseaux et Systemes Repartis: Calculateurs Paralleles, 2001, 13: 125- 154 |
16 |
Bai Z Z , Evans D J . Matrix multisplitting methods with applications to linear complementarity problems: Parallel asynchronous methods. Int J Comput Math, 2002, 79: 205- 232
doi: 10.1080/00207160211927 |
17 |
Bai Z Z , Zhang L L . Modulus-based synchronous multisplitting iteration methods for linear complementarity problems. Numer Linear Algebr, 2013, 20: 425- 439
doi: 10.1002/nla.1835 |
18 |
Bai Z Z , Zhang L L . Modulus-based synchronous two-stage multisplitting iteration methods for linear complementarity problems. Numer Algorithms, 2013, 62: 59- 77
doi: 10.1007/s11075-012-9566-x |
19 |
Dong J L , Jiang M Q . A modified modulus method for symmetric positive-definite linear complementarity problems. Numer Linear Algebr, 2009, 16: 129- 143
doi: 10.1002/nla.609 |
20 |
Hadjidimos A , Tzoumas M . Nonstationary extrapolated modulus algorithms for the solution of the linear complementarity problem. Linear Algebra Appl, 2009, 431: 197- 210
doi: 10.1016/j.laa.2009.02.024 |
21 |
Li W , Zheng H . A preconditioned modulus-based iteration method for solving linear complementarity problems of ![]() |
22 |
Liu S M , Zheng H , Li W . A general accelerated modulus-based matrix splitting iteration method for solving linear complementarity problems. CALCOLO, 2016, 53: 189- 199
doi: 10.1007/s10092-015-0143-2 |
23 |
Zhang L L , Ren Z R . Improved convergence theorems of modulus-based matrix splitting iteration methods for linear complementarity problems. Appl Math Lett, 2013, 26: 638- 642
doi: 10.1016/j.aml.2013.01.001 |
24 |
Zheng H , Li W . The modulus-based nonsmooth Newton's method for solving linear complementarity problems. J Comput Appl Math, 2015, 288: 116- 126
doi: 10.1016/j.cam.2015.04.006 |
25 |
Ferris M C , Pang J S . Engineering and economic applications of complementarity problems. SIAM Rev, 1997, 39: 669- 713
doi: 10.1137/S0036144595285963 |
26 |
Harker P T , Pang J S . Finite-dimensional variational inequality and nonlinear complementarity problems: a survey of theory, algorithms and applications. Math Program, 1990, 48: 161- 220
doi: 10.1007/BF01582255 |
27 | Xia Z C , Li C L . Modulus-based matrix splitting iteration methods for a class of nonlinear complementarity problem. Appl Math Comput, 2015, 271: 34- 42 |
28 |
Xie S L , Xu H R , Zeng J P . Two-step modulus-based matrix splitting iteration method for a class of nonlinear complementarity problems. Linear Algebr Appl, 2016, 494: 1- 10
doi: 10.1016/j.laa.2016.01.002 |
29 |
Ma C F , Huang N . Modified modulus-based matrix splitting algorithms for a class of weakly nondifferentiable nonlinear complementarity problems. Appl Numer Math, 2016, 108: 116- 124
doi: 10.1016/j.apnum.2016.05.004 |
30 |
Li R , Yin J F . Accelerated modulus-based matrix splitting iteration methods for a restricted class of nonlinear complementarity problems. Numer Algorithms, 2017, 75: 339- 358
doi: 10.1007/s11075-016-0243-3 |
31 |
Zheng H . Improved convergence theorems of modulus-based matrix splitting iteration method for nonlinear complementarity problems of ![]() doi: 10.1007/s10092-017-0236-1 |
32 |
Huang B H , Ma C F . Accelerated modulus-based matrix splitting iteration method for a class of nonlinear complementarity problems. Comp Appl Math, 2018, 37: 3053- 3076
doi: 10.1007/s40314-017-0496-z |
33 | Berman A , Plemmons R J . Nonnegative Matrix in the Mathematical Sciences. New York: Academic Press, 1979 |
[1] | Qiulan Qi,Dandan Guo. Approximation Properties of a New Bernstein-Bézier Operators with Parameters [J]. Acta mathematica scientia,Series A, 2021, 41(3): 583-594. |
[2] | CHEN Jia-Wei, WAN Zhong-Peng, ZHAO Lie-Ji. Convergence Analysis for Countable Family of Weak Bregman Relatively Nonexpansive Mappings [J]. Acta mathematica scientia,Series A, 2014, 34(1): 70-79. |
[3] | WANG Shi-Dong, HONG Wen-Ming. Alternative Proof for the Recurrence and Transience of Random Walks in Random Environment with Bounded Jumps [J]. Acta mathematica scientia,Series A, 2010, 30(2): 289-296. |
[4] | YAO Qiang. A Proof of the Complete Convergence Theorem for Contact Processes on Some Product Graphs [J]. Acta mathematica scientia,Series A, 2010, 30(1): 97-102. |
[5] | SHU Lan-Ping, LI Gang. Fixed Point |Theorems for Asymptotically Nonexpansive Type Semigroups in General Banach Spaces [J]. Acta mathematica scientia,Series A, 2009, 29(2): 290-296. |
[6] | Tian Yu; Ge Weigao. RIGHT FOCAL BOUNDARY VALUE PROBLEM WITH SINGULARITY [J]. Acta mathematica scientia,Series A, 2006, 26(6): 1064-. |
[7] | CHU Yu-Ming. Pseudo Non elementary Subgroups and Pseudo Kleinian Groups in SL(2,C) [J]. Acta mathematica scientia,Series A, 2005, 25(6): 877-880. |
[8] | CHEN Die, ZHANG Yu-Min, LIAO Xiao-Cuan-. Stability for Neutral Stochastic Functional Differential Equatio ns [J]. Acta mathematica scientia,Series A, 2005, 25(3): 323-330. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 131
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 70
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||||||
Discussed |
|