| 1 | Alves C O , Gao F S , Squassina M , Yang M B . Singularly perturbed critical Choquard equations. J Differential Equations, 2017, 263 (7): 3943- 3988 |
| 2 | Alves C O, Miyagaki O H. Existence and concentration of solution for a class of fractional elliptic equation in RN via penalization method. Calc Var Partial Differential Equations, 2016, 55(3), Article number: 47 |
| 3 | Alves C O , Ambrosio V . A multiplicity result for a nonlinear fractional Sch?dinger equation in RN without the Ambrosetti-Rabinowitz condition. J Math Anal Appl, 2018, 466 (1): 498- 522 |
| 4 | Ambrosio V . Multiplicity and concentration results for a fractional Choquard equation via penalization method. Potential Anal, 2019, 50 (1): 55- 82 |
| 5 | Ambrosio V . Concentration phenomena for a fractional Choquard equation with magnetic field. Dyn Partial Differ Equa, 2019, 16 (2): 125- 149 |
| 6 | Applebaum D . Lˊevy processes-from probability to finance and quantum groups. Not Amer Math Soc, 2004, 51 (11): 1336- 1347 |
| 7 | Benci V , Cerami G . Multiple positive solutions of some elliptic problems via the Morse theory and the domain topology. Calc Var Partial Differential Equations, 1994, 2 (1): 29- 48 |
| 8 | Cassani D , Zhang J J . Choquard-type equations with Hardy-Littlewood-Sobolev upper-critical growth. Adv Nonlinear Anal, 2019, 8 (1): 1184- 1212 |
| 9 | Cingolani S , Lazzo M . Multiple positive solutions to nonlinear Schr?dinger equations with competing potential functions. J Differential Equations, 2000, 160 (1): 118- 138 |
| 10 | Chen S T , Tang X H , Wei J Y . Nehari-type ground state solutions for a Choquard equation with doubly critical exponents. Adv Nonlinear Anal, 2021, 10 (1): 152- 171 |
| 11 | Di Nezza E , Palatucci G , Valdinoci E . Hitchhiker's guide to the fractional Sobolev spaces. Bull Sci Math, 2012, 136 (5): 521- 573 |
| 12 | Felmer F , Quaas A , Tan J G . Positive solutions of the nonlinear Schr?dinger equation with the fractional Laplace. Proc Roy Soc Edinburgh Sect A, 2012, 142 (6): 1237- 1262 |
| 13 | Figueiredo G M, Siciliano G. A multiplicity result via Ljusternick-Schnirelmann category and Morse theory for fractional Sch?dinger equation in RN. NoDEA Nonlinear Differential Equations Appl, 2016, 23(2), Article number:12 |
| 14 | Gao F S , Yang M B , Zhou J H . Existence of multiple semiclassical solutions for a critical Choquard equation with indefinite potential. Nonlinear Anal, 2020, 195: 111817 |
| 15 | He X M , Radulescu V D . Small linear perturbations of fractional Choquard equations with critical exponent. J Differential Equations, 2021, 282: 481- 540 |
| 16 | Lan F Q , He X M . The Nehari manifold for a fractional critical Choquard equation involving sign-changing weight functions. Nonlinear Anal, 2019, 180: 236- 263 |
| 17 | Laskin N . Fractional Schr?dinger equation. Phys Rev E, 2002, 66 (5): 056108 |
| 18 | Lieb E, Loss M. Analysis. Providence, RI: American Mathematical Society, 2001 |
| 19 | Moroz V , Van Schaftingen J . Groundstates of nonlinear Choquard equations: existence, qualitative properties and decay asymptotics. J Funct Anal, 2013, 265 (2): 153- 184 |
| 20 | Moroz V , Van Schaftingen J . Existence of groundstates for a class of nonlinear Choquard equations. Trans Amer Math Soc, 2015, 367 (9): 6557- 6579 |
| 21 | Moroz V , Van Schaftingen J . Semi-classical states for the Choquard equation. Calc Var Partial Differential Equations, 2015, 52 (1/2): 199- 235 |
| 22 | Moser J . A new proof of De Giorgi's theorem concerning the regularity problem for elliptic differential equations. Comm Pure Appl Math, 1960, 13: 457- 468 |
| 23 | Palatucci G , Pisante A . Improved Sobolev embeddings, profile decomposition, and concentration-compactness for fractional Sobolev spaces. Calc Var Partial Differential Equations, 2014, 50 (3/4): 799- 829 |
| 24 | Rabinowitz P H . On a class of nonlinear Schr?dinger equations. Z Angew Math Phys, 1992, 43 (2): 270- 291 |
| 25 | Su Y , Wang L , Chen H B , Liu S L . Multiplicity and concentration results for fractional Choquard equations: doubly critical case. Nonlinear Anal, 2020, 198: 111872 |
| 26 | Silvestre L . Regularity of the obstacle problem for a fractional power of the Laplace operator. Comm Pure Appl Math, 2007, 60 (1): 67- 112 |
| 27 | Tang X H , Cheng B T . Ground state sign-changing solutions for Kirchhoff type problems in bounded domains. J Differential Equations, 2016, 261 (4): 2384- 2402 |
| 28 | Tang X H , Chen S T . Singularly perturbed Choquard equations with nonlinearity satisfying Berestycki-Lions assumptions. Adv Nonlinear Anal, 2020, 9 (1): 413- 437 |
| 29 | Willem M . Minimax Theorems. Boston: Birkh?user, 1996 |
| 30 | Xiang M Q , Radulescu V D , Zhang B L . A critical fractional Choquard-Kirchhoff problem with magnetic field. Commun Contemp Math, 2019, 21 (4): 1850004 |
| 31 | Yang Z P , Zhao F K . Multiplicity and concentration behaviour of solutions for a fractional Choquard equation with critical growth. Adv Nonlinear Anal, 2021, 10 (1): 732- 774 |
| 32 | Zhang H , Zhang F B . Multiplicity and concentration of solutions for Choquard equations with critical growth. J Math Anal Appl, 2020, 481 (1): 123457 |
| 33 | Zhang H , Wang J , Zhang F B . Semiclassical states for fractional Choquard equations with critical growth. Commun Pure Appl Anal, 2019, 18 (1): 519- 538 |
| 34 | Zhang Y P , Tang X H , Radulescu V D . High perturbations of Choquard equations with critical reaction and variable growth. Proc Amer Math Soc, 2021, 149 (9): 3819- 3835 |