Acta mathematica scientia,Series A ›› 2021, Vol. 41 ›› Issue (6): 1750-1767.
Previous Articles Next Articles
Yongpeng Chen1(),Zhipeng Yang2,*(
)
Received:
2020-09-11
Online:
2021-12-26
Published:
2021-12-02
Contact:
Zhipeng Yang
E-mail:yongpengchen@mail.bnu.edu.cn;yangzhipeng326@163.com
Supported by:
CLC Number:
Yongpeng Chen,Zhipeng Yang. Multiplicity of Solutions for a Class of Critical Schrödinger-Poisson System with Two Parameters[J].Acta mathematica scientia,Series A, 2021, 41(6): 1750-1767.
1 |
Alves C O , Barros L M . Existence and multiplicity of solutions for a class of elliptic problem with critical growth. Monatsh Math, 2018, 187, 195- 215
doi: 10.1007/s00605-017-1117-z |
2 |
Alves C O , Ding Y . Multiplicity of positive solutions to a p-Laplacian equation involving critical nonlinearity. J Math Anal Appl, 2003, 279, 508- 521
doi: 10.1016/S0022-247X(03)00026-X |
3 |
Ambrosetti A . On Schrödinger-Poisson systems. Milan J Math, 2008, 76, 257- 274
doi: 10.1007/s00032-008-0094-z |
4 |
Bartsch T , Pankov A , Wang Z . Nonlinear Schrödinger equations with steep potential well. Commun Contemp Math, 2001, 3, 549- 569
doi: 10.1142/S0219199701000494 |
5 |
Bartsch T , Wang Z . Existence and multiplicity results for some superlinear elliptic problems on RN. Comm Partial Differential Equations, 1995, 20, 1725- 1741
doi: 10.1080/03605309508821149 |
6 |
Bartsch T , Wang Z . Multiple positive solutions for a nonlinear Schrödinger equation. Z Angew Math Phys, 2000, 51, 366- 384
doi: 10.1007/PL00001511 |
7 |
Benci V , Cerami G . The effect of the domain topology on the number of positive solutions of nonlinear elliptic problems. Arch Rational Mech Anal, 1991, 114, 79- 93
doi: 10.1007/BF00375686 |
8 |
Benci V , Fortunato D . An eigenvalue problem for the Schrödinger-Maxwell equations. Topol Methods Nonlinear Anal, 1998, 11, 283- 293
doi: 10.12775/TMNA.1998.019 |
9 |
Brézis H , Lieb E . A relation between pointwise convergence of functions and convergence of functionals. Proc Amer Math Soc, 1983, 88, 486- 490
doi: 10.1090/S0002-9939-1983-0699419-3 |
10 |
Cerami G , Vaira G . Positive solutions for some non-autonomous Schrödinger-Poisson systems. J Differential Equations, 2010, 248, 521- 543
doi: 10.1016/j.jde.2009.06.017 |
11 | Chang K . Infinite-Dimensional Morse Theory and Multiple Solution Problems. Boston: Birkhäuser, 1993 |
12 |
Clapp M , Ding Y . Positive solutions of a Schrödinger equation with critical nonlinearity. Z Angew Math Phys, 2004, 55, 592- 605
doi: 10.1007/s00033-004-1084-9 |
13 |
Ding Y , Szulkin A . Bound states for semilinear Schrödinger equations with sign-changing potential. Calc Var Partial Differential Equations, 2007, 29, 397- 419
doi: 10.1007/s00526-006-0071-8 |
14 |
方立婉, 黄文念, 汪敏庆. 临界情形下Schrödinger-Maxwell方程的基态解. 数学物理学报, 2019, 39A (3): 475- 483
doi: 10.3969/j.issn.1003-3998.2019.03.007 |
Fang L , Huang W , Wang M . Ground-state solutions for Schrödinger-Maxwell equations in the critical growth. Acta Math Sci, 2019, 39A (3): 475- 483
doi: 10.3969/j.issn.1003-3998.2019.03.007 |
|
15 |
冯晓晶. 带有双临界项的薛定谔-泊松系统非平凡解的存在性. 数学物理学报, 2020, 40A (6): 1590- 1598
doi: 10.3969/j.issn.1003-3998.2020.06.013 |
Feng X . Nontrivial solution for Schrödinger-Poisson type systems with double critical terms. Acta Math Sci, 2020, 40A (6): 1590- 1598
doi: 10.3969/j.issn.1003-3998.2020.06.013 |
|
16 |
Jiang Y , Zhou H . Schrödinger-Poisson system with steep potential well. J Differential Equations, 2011, 251, 582- 608
doi: 10.1016/j.jde.2011.05.006 |
17 | Jin T , Yang Z . The fractional Schrödinger-Poisson systems with infinitely many solutions. J Korean Math Soc, 2020, 57, 489- 506 |
18 | Landkof N . Foundations of Modern Potential Theory. New York: Springer-Verlag, 1972 |
19 |
Sun J , Wu T . Ground state solutions for an indefinite Kirchhoff type problem with steep potential well. J Differential Equations, 2014, 256, 1771- 1792
doi: 10.1016/j.jde.2013.12.006 |
20 | Yang Z , Yu Y , Zhao F . Concentration behavior of ground state solutions for a fractional Schrödinger-Poisson system involving critical exponent. Commun Contemp Math, 2019, 21, 1- 46 |
21 | Yang Z , Zhang W , Zhao F . Existence and concentration results for fractional Schrödinger-Poisson system via penalization method. Electron J Differential Equations, 2021, 14, 1- 31 |
22 |
Ye Y , Tang C . Existence and multiplicity of solutions for Schrödinger-Poisson equations with sign-changing potential. Calc Var Partial Differential Equations, 2015, 53, 383- 411
doi: 10.1007/s00526-014-0753-6 |
23 | Zhang J , Lou Z . Existence and concentration behavior of solutions to Kirchhoff type equation with steep potential well and critical growth. J Math Phys, 2021, 62, 1- 14 |
24 |
Zhao L , Liu H , Zhao F . Existence and concentration of solutions for the Schrödinger-Poisson equations with steep well potential. J Differential Equations, 2013, 255, 1- 23
doi: 10.1016/j.jde.2013.03.005 |
25 | Zhao L , Zhao F . Positive solutions for Schrödinger-Poisson equations with a critical exponent. Nonlinear Anal, 1998, 11, 283- 293 |
[1] | Jingran He,Helin Guo,Wenqing Wang. A p-Laplace Eigenvalue Problem with Coercive Potentials [J]. Acta mathematica scientia,Series A, 2021, 41(5): 1323-1332. |
[2] | Hui Yang,Yuzhu Han. Blow-Up Properties of Solutions to a Class of Parabolic Type Kirchhoff Equations [J]. Acta mathematica scientia,Series A, 2021, 41(5): 1333-1346. |
[3] | Xiaojing Feng. Nontrivial Solution for Schrödinger-Poisson type Systems with Double Critical Terms [J]. Acta mathematica scientia,Series A, 2020, 40(6): 1590-1598. |
[4] | Wencui Liang,Zhengjie Zhang. Multiple Solutions for Nonlinear Equations Related to Kirchhoff Type Equations [J]. Acta mathematica scientia,Series A, 2020, 40(4): 842-849. |
[5] | Lei Ji,Jiafeng Liao. Existence of the Second Positive Solution for a Class of Nonhomogeneous Kirchhoff Type Problems with Critical Exponent [J]. Acta mathematica scientia,Series A, 2019, 39(5): 1094-1101. |
[6] | Jing Zhang. The Asymptotic Behaviors and Phase Separation for a Class of Subcritical Bose-Einstein Condensation System [J]. Acta mathematica scientia,Series A, 2019, 39(3): 441-450. |
[7] | Xiaoming Peng,Xiaoxiao Zheng,Yadong Shang. Global Attractors for a Fourth Order Pseudo-Parabolic Equation with Fading Memory [J]. Acta mathematica scientia,Series A, 2019, 39(1): 114-124. |
[8] | Kang Dongsheng, Xiong Ping. Biharmonic Systems Involving Critical Nonlinearities and Different Rellich-Type Potentials [J]. Acta mathematica scientia,Series A, 2017, 37(6): 1105-1118. |
[9] | Liao Jiafeng, Li Hongying. Existence and Multiplicity of Positive Solutions for the Superlinear Kirchhoff-Type Equations with Critical Sobolev Exponent [J]. Acta mathematica scientia,Series A, 2017, 37(6): 1119-1124. |
[10] | Pei Ruichang, Zhang Jihui, Ma Caochuan. Nontrivial Solutions for a Class of Superlinear (p, 2)-Laplacian Dirichlet Problems [J]. Acta mathematica scientia,Series A, 2017, 37(1): 92-101. |
[11] | Wu Yuanze, Wu Tsungfang, Liu Zeng. On the Brézis-Nirenberg Problem with Nonhomogeneous Dirichlet Boundary Conditions [J]. Acta mathematica scientia,Series A, 2015, 35(6): 1025-1043. |
[12] | Fan Zi-an. On Nonhomogeneous Elliptic Equations Involving Caffarelli-Kohn-Nirenberg Critical Exponent [J]. Acta mathematica scientia,Series A, 2015, 35(5): 884-894. |
[13] | LI Ben-Niao, CHEN Xiao-Li. Existence of Solutions for Fractional Laplace Equation with Concave-Convex Term [J]. Acta mathematica scientia,Series A, 2014, 34(5): 1228-1235. |
[14] | ZHANG Zheng-Jie, GUO Liu-Tao, ZHU Xiao-Kun. Multiple Solutions for a Semilinear Elliptic Equation Involving Sobolev Critical Exponent [J]. Acta mathematica scientia,Series A, 2014, 34(4): 789-795. |
[15] | ZHONG Yan-Sheng. Multiple Solutions for the p&q-Laplacian Problem with Supercritical Exponent [J]. Acta mathematica scientia,Series A, 2014, 34(4): 879-889. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||
Full text 205
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Abstract 121
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||
Discussed |
|