Acta mathematica scientia,Series A ›› 2021, Vol. 41 ›› Issue (6): 1657-1670.
Previous Articles Next Articles
Qinghua Zhang1(),Yueping Zhu2,*(
)
Received:
2020-05-19
Online:
2021-12-26
Published:
2021-12-02
Contact:
Yueping Zhu
E-mail:zhangqh@ntu.edu.cn;zhuyueping@ntu.edu.cn
Supported by:
CLC Number:
Qinghua Zhang,Yueping Zhu. Weighted Temporal-Spatial Estimates of the Stokes Semigroup with Applications to the Non-Stationary Navier-Stokes Equation in Half-Space[J].Acta mathematica scientia,Series A, 2021, 41(6): 1657-1670.
1 | Adams R A , Fournier J F . Sobolev Spaces. New York: Acdamic Press, 2003 |
2 | Bae H O . Analicity and asymptotics for the Stokes solutions in a weighted space. J Math Anal Appl, 2002, 269, 147- 171 |
3 |
Fröhlich A . The Helmholtz decomposition of weighted ![]() ![]() |
4 |
Fröhlich A . The Stokes operator in weighted ![]() ![]() doi: 10.1007/s00021-003-0080-8 |
5 |
Fröhlich A . Solutions of the Navier-Stoke initial value problem in weighted ![]() ![]() |
6 | Galdi G P . An Introduction to the Navier-Stokes Initial-Boundary Value Problem, Fundamental Directions in Mathematical Fluid Mechanics. Basel: Birkhäuser, 2000 |
7 |
Giga Y . Solutions for semilinear parabolic equations in ![]() ![]() doi: 10.1016/0022-0396(86)90096-3 |
8 |
Han P . Weighted decay results for the nonstationary Stokes flow and Navier-Stokes equations in half spaces. J Math Fluid Mech, 2015, 17, 599- 626
doi: 10.1007/s00021-015-0209-6 |
9 |
Han P . Large time behavior for the nonstationary Navier-Stokes flows in the half-space. Adv Math, 2016, 288, 1- 58
doi: 10.1016/j.aim.2015.10.010 |
10 |
Han P . On weighted estimates for the Stokes flows, with application to the Navier-Stokes equations. J Math Fluid Mech, 2018, 20, 1155- 1172
doi: 10.1007/s00021-018-0360-y |
11 |
He C , Wang L . Weighted ![]() ![]() ![]() ![]() |
12 |
Iwashita H . ![]() ![]() ![]() ![]() ![]() ![]() doi: 10.1007/BF01443518 |
13 |
Kato T . Strong ![]() ![]() ![]() doi: 10.1007/BF01174182 |
14 |
Kozono H . Global ![]() ![]() ![]() ![]() doi: 10.1016/0022-0396(89)90114-9 |
15 |
Kobayashi T, Kubo T. Weighted ![]() ![]() ![]() ![]() |
16 | Meyries M. Maximal Regularity in Weighted Spaces, Nonlinear Boundary Conditions, and Global Attractors[D]. Karlsruhe: Karlsruhe Institute of Technology, 2010 |
17 |
Prüss J , Simonett G . Maximal regularity for evolution equations in weighted ![]() ![]() |
18 |
Stein E M , Weiss G . Fractional integral on ![]() |
19 | Stein E M . Singular Integrals and Differentiability Properties of Functions. Princeton: Princeton Univ Press, 1971 |
20 |
Ukai S . A solution formula for the Stokes equation in ![]() ![]() doi: 10.1002/cpa.3160400506 |
21 |
张书陶. 加权Hardy-Sobolev不等式及其应用. 数学物理学报, 2013, 33A (4): 621- 626
doi: 10.3969/j.issn.1003-3998.2013.04.002 |
Zhang S . Weighted Hardy-Sobolev inequality and its application. Acta Math Sci, 2013, 33A (4): 621- 626
doi: 10.3969/j.issn.1003-3998.2013.04.002 |
[1] | Daoguo Zhou. Regularity Criteria in Lorentz Spaces for the Three Dimensional Navier-Stokes Equations [J]. Acta mathematica scientia,Series A, 2021, 41(5): 1396-1404. |
[2] | Shangxi Guo. Existence of Global Strong Solutions for Initial Value Problems of One-Dimensional Compressible Navier-Stokes Equations [J]. Acta mathematica scientia,Series A, 2021, 41(3): 642-651. |
[3] | Hongqiao Li. Liouville Type Theorem for Hartree Equations in Half Spaces [J]. Acta mathematica scientia,Series A, 2021, 41(2): 388-401. |
[4] | Mingyue Xu,Caidi Zhao,Caraballo Tomás. Degenerate Regularity of Trajectory Statistical Solutions for the 3D Incompressible Navier-Stokes Equations [J]. Acta mathematica scientia,Series A, 2021, 41(2): 336-344. |
[5] | Jianhua Huang,Zaiyun Zhang,Yong Chen. The Moderate Deviation Principle for Stochastic 3D LANS-α Model Driven by Multiplicative Lévy Noise [J]. Acta mathematica scientia,Series A, 2019, 39(6): 1532-1544. |
[6] | Wang Junli, Zhang Xingwei, Liu Jian. Instability of Plane Couette-Poiseuille Flow of Compressible Navier-Stokes Equation [J]. Acta mathematica scientia,Series A, 2018, 38(2): 322-333. |
[7] | Wang Heyuan, Cui Jin. The Analysis of Global Stability and Numerical Simulation of Chaos Behaviors of Rotating Flow [J]. Acta mathematica scientia,Series A, 2017, 37(4): 783-792. |
[8] | Yang Xinguang, Zhao Mingxia, Hou Wei. Upper Semi-Continuity of Pullback Attractors for the 2D Non-Autonomous Navier-Stokes Equations with Weak Damping [J]. Acta mathematica scientia,Series A, 2016, 36(4): 722-739. |
[9] | ZHANG Zu-Jin. An Improved Regularity Criterion for the 3D Navier-Stokes Equations in Terms of Two Entries of the Velocity Gradient [J]. Acta mathematica scientia,Series A, 2014, 34(5): 1327-1335. |
[10] | YANG Xin-Guang, WANG Hong-Jun, LI Jun-Tao. Uniform Attractors for the 2D Non-Autonomous Navier-Stokes Equation with Weak Damping [J]. Acta mathematica scientia,Series A, 2014, 34(4): 828-840. |
[11] | GAO Zhen-Sheng, JIANG Fei, WANG Wei-Wei. Semi-Strong Solutions to Hydrodynamic Flow of Liquid Crystals [J]. Acta mathematica scientia,Series A, 2014, 34(2): 367-377. |
[12] |
SONG Hong-Li, GUO Zhen-Hua.
Existence of Global Strong Solutions and Interface Behavior of Solutions for 1D Compressible Navier-Stokes Equations with Free Boundary Value Problem [J]. Acta mathematica scientia,Series A, 2013, 33(4): 601-620. |
[13] | DONG Jian-Wei, ZHANG You-Lin, WANG Yan-Ping. Analysis of the Stationary Quantum Navier-Stokes Equations in one Space Dimension [J]. Acta mathematica scientia,Series A, 2013, 33(4): 719-727. |
[14] | BIAN Dong-Fen, YUAN Bao-Quan. Regularity of Weak Solutions to the Generalized Navier-Stokes Equations [J]. Acta mathematica scientia,Series A, 2011, 31(6): 1601-1609. |
[15] | ZHAO Cai-De. H1-uniform Attractor for 2D Navier-Stokes Equations [J]. Acta mathematica scientia,Series A, 2011, 31(5): 1416-1430. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||
Full text 163
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Abstract 140
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||
Discussed |
|