Acta mathematica scientia,Series A ›› 2021, Vol. 41 ›› Issue (5): 1492-1503.
Previous Articles Next Articles
Guijiang Qin1,2(),Jiashan Yang1,3,*()
Received:
2021-01-18
Online:
2021-10-26
Published:
2021-10-08
Contact:
Jiashan Yang
E-mail:57841824@qq.com;syxyyjs@163.com
Supported by:
CLC Number:
Guijiang Qin,Jiashan Yang. Oscillation Theorems of Second-Order Variable Delay Dynamic Equations with Quasilinear Neutral Term[J].Acta mathematica scientia,Series A, 2021, 41(5): 1492-1503.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
1 |
Sun S R , Han Z L , Li T X . Oscillation of second-order delay dynamic equations on time scales. J Appl Math Comput, 2012, 39, 551- 554
doi: 10.1007/s12190-012-0563-y |
2 |
Zhang C H , Li T X . Some oscillation results for second-order nonlinear delay dynamic equations. Applied Mathematics Letters, 2013, 26, 1114- 1119
doi: 10.1016/j.aml.2013.05.014 |
3 |
Agarwal R P , Zhang C H , Li T X . New Kamenev-type oscillation criteria for second-order nonlinear advanced dynamic equations. Applied Mathematics and Computation, 2013, 225, 822- 828
doi: 10.1016/j.amc.2013.09.072 |
4 | Zhang M, Chen Wi, El-sheikh M, et al. Oscillation criteria for second-order nonlinear delay dynamic equations of neutral type. Advances in Difference Equations, 2018, 2018. Article number: 26 |
5 |
覃桂茳, 杨甲山. 时标上一类二阶非线性动态方程振动性的新准则. 安徽大学学报(自然科学版), 2019, 43 (1): 24- 31
doi: 10.3969/j.issn.1000-2162.2019.01.004 |
Qin G J , Yang J S . New criteria for oscillation of certain second-order nonlinear dynamic equations on time scales. Journal of Anhui University (Natural Science Edition), 2019, 43 (1): 24- 31
doi: 10.3969/j.issn.1000-2162.2019.01.004 |
|
6 | 杨甲山. 时间测度链上具正负系数的二阶阻尼动力方程的振动准则. 数学物理学报, 2014, 34A (2): 393- 408 |
Yang J S . Oscillation criteria for second-order dynamic equations with positive and negative coefficients and damping on time scales. Acta Mathematica Scientia, 2014, 34A (2): 393- 408 | |
7 | 杨甲山. 时间测度链上一类二阶Emden-Fowler型动态方程的振荡性. 应用数学学报, 2016, 39 (3): 334- 350 |
Yang J S . Oscillation for a class of second-order Emden-Fowler dynamic equations on time scales. Acta Mathematicae Applicatae Sinica, 2016, 39 (3): 334- 350 | |
8 |
杨甲山, 张晓建. 时间模上一类二阶非线性动态方程振荡性的新结果. 华东师范大学学报(自然科学版), 2017, 2017 (3): 54- 63
doi: 10.3969/j.issn.1000-5641.2017.03.006 |
Yang J S , Zhang X J . New results of oscillation for certain second-order nonlinear dynamic equations on time scales. Journal of East China Normal University (Natural Science), 2017, 2017 (3): 54- 63
doi: 10.3969/j.issn.1000-5641.2017.03.006 |
|
9 | 杨甲山. 时间尺度上二阶Emden-Fowler型延迟动态方程的振动性. 振动与冲击, 2018, 37 (16): 154- 161 |
Yang J S . Oscillation for a class of second-order Emden-Fowler-type delay dynamic equations on time scales. Journal of Vibration and Shock, 2018, 37 (16): 154- 161 | |
10 | 杨甲山. 时间模上一类二阶非线性延迟动力系统的振动性分析. 应用数学学报, 2018, 41 (3): 388- 402 |
Yang J S . Oscillation analysis of second-order nonlinear delay dynamic equations on time scales. Acta Mathematicae Applicatae Sinica, 2018, 41 (3): 388- 402 | |
11 | 李继猛, 杨甲山. 时间模上一类二阶泛函动态方程振荡的充分条件. 浙江大学学报(理学版),, 2019, 46 (4): 408- 411 |
Li J M , Yang J S . Sufficient conditions of oscillation for certain second-order functional dynamic equations on time scales. Journal of Zhejiang University(Science Edition), 2019, 46 (4): 405- 411 | |
12 | 李继猛, 杨甲山. 时间尺度上一类高阶非线性泛函动态方程的振动性. 应用数学学报, 2020, 43 (4): 756- 770 |
Li J M , Yang J S . Oscillation for certain higher-order nonlinear functional dynamic equations on time scales. Acta Mathematicae Applicatae Sinica, 2020, 43 (4): 756- 770 | |
13 |
Agarwal R P , Bohner M , Li T , et al. Oscillation of second-order differential equations with a sublinear neutral term. Carpathian Journal of Mathematics, 2014, 30 (1): 1- 6
doi: 10.37193/CJM.2014.01.01 |
14 | Sun S , Li T , Han Z , et al. Oscillation theorems for second-order quasilinear neutral functional differential equations. Abstract and Applied Analysis, 2012, 2012, 1- 17 |
15 |
Yang J S , Wang J J , Qin X W , et al. Oscillation of nonlinear second-order neutral delay differential equations. Journal of Nonlinear Sciences and Applications, 2017, 10 (5): 2727- 2734
doi: 10.22436/jnsa.010.05.39 |
16 |
杨甲山. 具非线性中立项的二阶变时滞微分方程的振荡性. 华东师范大学学报(自然科学版), 2016, 2016 (4): 30- 37
doi: 10.3969/j.issn.1000-5641.2016.04.004 |
Yang J S . Oscillation of second-order variable delay differential equations with nonlinear neutral term. Journal of East China Normal University (Natural Science), 2016, 2016 (4): 30- 37
doi: 10.3969/j.issn.1000-5641.2016.04.004 |
|
17 |
李继猛, 杨甲山. 具非线性中立项的二阶延迟微分方程的Philos型准则. 数学物理学报, 2020, 40A (1): 169- 186
doi: 10.3969/j.issn.1003-3998.2020.01.013 |
Li J M , Yang J S . Philos-type criteria for second-order delay differential equations with nonlinear neutral term. Acta Mathematica Scientia, 2020, 40A (1): 169- 186
doi: 10.3969/j.issn.1003-3998.2020.01.013 |
|
18 | 孙喜东, 俞元洪. 具有次线性中立项的Emden-Fowler中立型微分方程的振动性. 应用数学学报, 2020, 43 (5): 771- 780 |
Sun X D , Yu Y H . Oscillation of Emden-Fowler neutral differential equations with sublinear neutral term. Acta Mathematicae Applicatae Sinica, 2020, 43 (5): 771- 780 |
|