Acta mathematica scientia,Series A ›› 2021, Vol. 41 ›› Issue (3): 702-722.
Previous Articles Next Articles
Xianyong Yang1,2(),Xianhua Tang2,*(),Guangze Gu3()
Received:
2020-03-31
Online:
2021-06-01
Published:
2021-06-09
Contact:
Xianhua Tang
E-mail:ynyangxianyong@163.com;tangxh@mail.csu.edu.cn;guangzegu@163.com
Supported by:
CLC Number:
Xianyong Yang,Xianhua Tang,Guangze Gu. Existence and Multiplicity of Solutions for a Fractional Choquard Equation with Critical or Supercritical Growth[J].Acta mathematica scientia,Series A, 2021, 41(3): 702-722.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
1 |
Alves C O , Nóbrega A B , Yang M B . Multi-bump solutions for Choquard equation with deepening potential well. Calc Var Partial Differ Equ, 2016, 55, Article number: 48
doi: 10.1007/s00526-016-0984-9 |
2 |
Brändle C , Colorado E , De Pablo A , Sánchez U . A concave-convex elliptic problem involving the fractional Laplacian. Proc Roy Soc Edinburgh Sect A, 2013, 143, 39- 71
doi: 10.1017/S0308210511000175 |
3 |
Brézis H , Nirenberg L . Positive solutions of nonlinear elliptic equations involving critical Sobolev exponent. Comm Pure Appl Math, 1983, 36, 437- 477
doi: 10.1002/cpa.3160360405 |
4 |
Caffarelli L , Silvestre L . An extension problem related to the fractional Laplacian. Comm Partial Differential Equations, 2007, 32, 1245- 1260
doi: 10.1080/03605300600987306 |
5 |
Chen S T , Yuan S . Ground state solutions for a class of Choquard equations with potential vanishing at infinity. J Math Anal Appl, 2018, 463, 880- 894
doi: 10.1016/j.jmaa.2018.03.060 |
6 |
Chen Y H , Liu C . Ground state solutions for non-autonomous fractional Choquard equations. Nonlinearity, 2016, 29, 1827- 1842
doi: 10.1088/0951-7715/29/6/1827 |
7 |
Cingolani S , Clapp M , Secchi S . Multiple solutions to a magnetic nonlinear Choquard equation. Z Angew Math Phys, 2012, 63, 233- 248
doi: 10.1007/s00033-011-0166-8 |
8 |
Clapp M , Salazar D . Positive and sign changing solutions to a nonlinear Choquard equation. J Math Anal Appl, 2013, 407, 1- 15
doi: 10.1016/j.jmaa.2013.04.081 |
9 |
Clark D . A Variant of the Lusternik-Schnirelman theory. Indiana Univ Math J, 1972, 22, 65- 74
doi: 10.1512/iumj.1973.22.22008 |
10 |
d'Avenia P , Siciliano G , Squassina M . On fractional Choquard equations. Math Mod Meth Appl Sci, 2015, 25, 1447- 1476
doi: 10.1142/S0218202515500384 |
11 |
d'Avenia P , Siciliano G , Squassina M . Existence results for a doubly nonlocal equation. Sao Paulo J Math Sci, 2015, 9, 311- 324
doi: 10.1007/s40863-015-0023-3 |
12 |
Di Nezza E , Palatucci G , Valdinoci E . Hitchhiker's guide to the fractional Sobolev spaces. Bull Sci Math, 2012, 136, 521- 573
doi: 10.1016/j.bulsci.2011.12.004 |
13 |
Ekeland I . On the variational principle. J Math Anal Appl, 1974, 47, 324- 353
doi: 10.1016/0022-247X(74)90025-0 |
14 | Frank R L, Lenzmann E. On ground states for the L2 critical boson star equation. 2009, arXiv: 0910.2721 |
15 |
Gao Z , Tang X H , Chen S T . On existence and concentration behavior of positive ground state solutions for a class of fractional Schrödinger-Choquard equations. Z Angew Math Phys, 2018, 69, Article number: 122
doi: 10.1007/s00033-018-1016-8 |
16 |
Gu G Z , Tang X H . The concentration behavior of ground states for a class of Kirchhoff-type problems with Hartree-type nonlinearity. Adv Nonlinear Stud, 2019, 19, 779- 795
doi: 10.1515/ans-2019-2045 |
17 |
Kajikiya R . A critical point theorem related to the symmetric mountain pass lemma and its applications to elliptic equations. J Func Anal, 2005, 225, 352- 370
doi: 10.1016/j.jfa.2005.04.005 |
18 |
Lan F Q , He X . The Nehari manifold for a fractional critical Choquard equation involving sign-changing weight functions. Nonlinear Anal, 2019, 180, 236- 263
doi: 10.1016/j.na.2018.10.010 |
19 |
Lieb E H . Existence and uniqueness of the minimizing solution of Choquard's nonlinear equation. Stud Appl Math, 1977, 57, 93- 105
doi: 10.1002/sapm197757293 |
20 | Lieb E H , Loss M . Analysis. Providence: American Mathematical Society, 2001, |
21 |
Lions P L . The Choquard equation and related questions. Nonlinear Anal, 1980, 4, 1063- 1072
doi: 10.1016/0362-546X(80)90016-4 |
22 |
Liu H D . Positive solution for a quasilinear elliptic equation involving critical or supercritical exponent. J Math Phys, 2016, 57, 041506
doi: 10.1063/1.4947109 |
23 | Li S J , Liu Z L . Multiplicity of solutions for some elliptic equations involving critical and supercritical Sobolev exponents. Topol Methods Nonlinear Anal, 2006, 28, 235- 261 |
24 |
Ma L , Zhao L . Classification of positive solitary solutions of the nonlinear Choquard equation. Arch Ration Mech Anal, 2010, 195, 455- 467
doi: 10.1007/s00205-008-0208-3 |
25 | Moroz V , Schaftingen J V . Existence of groundstates for a class of nonlinear Choquard equations. Trans Amer Math Soc, 2015, 367, 6557- 6579 |
26 |
Mukherjee T , Sreenadh K . Fractional Choquard equation with critical nonlinearities. NoDEA Nonlinear Differential Equations Appl, 2017, 24, 63
doi: 10.1007/s00030-017-0487-1 |
27 | Pekar S . Untersuchung über die Elektronentheorie der Kristalle. Berlin: Akademie Verlag, 1954 |
28 | Penrose R . Quantum computation, entanglement and state reduction. Philos Trans Roy Soc, 1998, 356, 1- 13 |
29 | Struwe M . Variational Methods. Berlin: Springer, 2000 |
30 | Szulkin A, Weth T. The method of Nehari manifold//Gao D Y, Motreanu D. Handbook of Nonconvex Analysis and Applications. Boston: International Press, 2010: 597-632 |
31 | Tang X H , Chen S T . Singularly perturbed Choquard equations with nonlinearity satisfying BerestyckiLions assumptions. Adv Nonlinear Anal, 2020, 9, 413- 437 |
32 |
王文波, 李全清. 带有变号深阱位势的分数阶薛定谔方程非平凡解的存在性和集中行为. 数学物理学报, 2018, 38A (5): 893- 902
doi: 10.3969/j.issn.1003-3998.2018.05.007 |
Wang W B , Li Q Q . Existence and concentration of nontrivial solutions for the fractional Schrödinger equations with sign-changing steep well potential. Acta Math Sci, 2018, 38A (5): 893- 902
doi: 10.3969/j.issn.1003-3998.2018.05.007 |
|
33 | Willemm M . Minimax Theorems. Boston: Birkhäuser, 1996 |
34 | Yang X Y , Zhang W , Zhao F K . A Nontrivial solutions of a quasilinear elliptic equation via dual approach. Acta Mathematica Scientia, 2019, 39B, 580- 596 |
35 |
Zhou F , Wu K . Infinitely many small solutions for a modified nonlinear Schrödinger equations. J Math Anal Appl, 2014, 411, 953- 959
doi: 10.1016/j.jmaa.2013.09.058 |
|