Acta mathematica scientia,Series A ›› 2021, Vol. 41 ›› Issue (3): 666-685.
Previous Articles Next Articles
Received:
2020-04-17
Online:
2021-06-01
Published:
2021-06-09
Contact:
Kaimin Teng
E-mail:1906157258@qq.com;tengkaimin2013@163.com
Supported by:
CLC Number:
Yiqun Cheng,Kaimin Teng. Positive Ground State Solutions for Nonlinear Critical Kirchhoff Type Problem[J].Acta mathematica scientia,Series A, 2021, 41(3): 666-685.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
1 | Kirchhoff G . Vorlesungen über Mechanik. Teubner: Leipzig, 1883 |
2 |
Xu L P , Chen H B . Gound state solutions for Kirchhoff-type equations with a general nonlinearity in the critical growth. Adv Nonlinear Anal, 2018, 7, 535- 546
doi: 10.1515/anona-2016-0073 |
3 |
Liu Z S , Guo S J . On ground states for the Kirchhoff-type problem with a general critical nonlinearity. J Math Anal Appl, 2015, 426, 267- 287
doi: 10.1016/j.jmaa.2015.01.044 |
4 |
Li H Y . Existence of positive ground state solutions for a critical Kirchhoff type problem with sign-changing potential. Comput Math Appl, 2018, 75, 2858- 2873
doi: 10.1016/j.camwa.2018.01.015 |
5 |
Chen B T , Tang X H . Ground state sign-changing solutions for asymptotically 3-linear Kirchhoff-type problems. Complex Var Elliptic Equ, 2017, 62, 1093- 1116
doi: 10.1080/17476933.2016.1270272 |
6 |
Qin D D , He Y B , Tang X H . Ground state solutions for Kirchhoff type equations with asymptotically 4-linear nonlinearity. Comput Math Appl, 2016, 71, 1524- 1536
doi: 10.1016/j.camwa.2016.02.037 |
7 |
Qin D D , He Y B , Tang X H . Ground state and multiple solutions for Kirchhoff type equations with critical exponent. Canad Math Bull Vol, 2018, 61 (2): 353- 369
doi: 10.4153/CMB-2017-041-x |
8 |
Li G B , Ye H Y . Existence of positive ground state solutions for the nonlinear Kirchhoff type equations in $\mathbb{R}^3$. J Differential Equations, 2014, 257, 566- 600
doi: 10.1016/j.jde.2014.04.011 |
9 |
Wu K . Existence of ground states for a Kirchhoff type problem without 4-superlinear condition. Comput Math Appl, 2018, 75, 755- 763
doi: 10.1016/j.camwa.2017.10.005 |
10 |
Guo Z J . Ground states for Kirchhoff equations without compact condition. J Differential Equations, 2015, 259, 2884- 2902
doi: 10.1016/j.jde.2015.04.005 |
11 |
Zhang H , Zhang F B . Ground states for the nonlinear Kirchhoff type problems. J Math Anal Appl, 2015, 423, 1671- 1692
doi: 10.1016/j.jmaa.2014.10.062 |
12 |
Liu Z S , Guo S J . Existence of positive ground state solutions for Kirchhoff type problems. Nonlinear Anal, 2015, 120, 1- 13
doi: 10.1016/j.na.2014.12.008 |
13 |
Tang X H , Chen S T . Ground state solutions of Nehari-Pohozaev type for Kirchhoff-type problems with general potentials. Calc Var Partial Differential Equations, 2017, 56, 110- 134
doi: 10.1007/s00526-017-1214-9 |
14 |
Chen S T , Tang X H . Berestycki-Lions conditions on ground state solutions for Kirchhoff-type problems with variable potentials. J Math Phys, 2019, 60, 121509
doi: 10.1063/1.5128177 |
15 | Ye Y W . Ground state solutions for Kirchhoff-type problems with critical nonlinearity. Taiwanese J Math, 2020, 24, 63- 79 |
16 |
Sun J T , Wu T F . Ground state solutions for an indefine Kirchhoff type problem with steep potential well. J Differential Equations, 2014, 256, 1771- 1792
doi: 10.1016/j.jde.2013.12.006 |
17 |
Chen B T , Li G F , Tang X H . Nehari-type ground state solutions for Kirchhoff type problems in $\mathbb{R}^N$. Appl Anal, 2019, 98, 1255- 1266
doi: 10.1080/00036811.2017.1419202 |
18 |
Hu T X , Lu L . On some nonlocal equations with competing coefficients. J Math Anal Appl, 2018, 460, 863- 884
doi: 10.1016/j.jmaa.2017.12.027 |
19 |
He X M , Zou W M . Ground states for nonlinear Kirchhoff equations with critical growth. Annali di Mate, 2014, 193, 473- 500
doi: 10.1007/s10231-012-0286-6 |
20 |
Liu Z S , Guo S J . Existence and concentration of positive ground states for a Kirchhoff equation involving critical Sobolev exponent. Z Angew Math Phys, 2015, 66, 747- 769
doi: 10.1007/s00033-014-0431-8 |
21 | Liu Z S , Luo C L . Existence of positive ground state solutions for Kirchhoff type equation with general critical growth. Top Methods Nonlinear Anal, 2016, 49, 165- 182 |
22 |
Liu J , Liao J F , Pan H L . Ground state solution on a non-autonomous Kirchhoff type equation. Comput Math Appl, 2019, 78, 878- 888
doi: 10.1016/j.camwa.2019.03.009 |
23 |
Lin X Y , Wei J Y . Existence and concentration of ground state solutions for a class of Kirchhoff-type problems. Nonlinear Anal, 2020, 195, 111715
doi: 10.1016/j.na.2019.111715 |
24 |
Li G B , Ye H Y . Existence of positive solutions for nonlinear Kirchhoff type problems in $\mathbb{R}^3$ with critical Sobolev exponent. Math Meth Appl Sci, 2014, 37, 2570- 2584
doi: 10.1002/mma.3000 |
25 |
Sun D D , Zhang Z T . Existence and asymptotic behaviour of ground state solutions for Kirchhoff-type equations with vanishing potentials. Z Angew Math Phys, 2019, 70 (37): 1- 18
doi: 10.1007/s00033-019-1082-6 |
26 |
Tang X H , Chen B T . Ground state sign-changing solutions for Kirchhoff type problems in bounded domains. J Differential Equations, 2016, 261, 2384- 2402
doi: 10.1016/j.jde.2016.04.032 |
27 | Hu T , Lu L . Multiplicity of positive solutions for Kirchhoff type problems in $\mathbb{R}^3$. Topol Methods Nonlinear Anal, 2017, 50, 231- 252 |
28 | Willem M . Minimax Theorems. Boston: Birkhäuser, 1996 |
29 |
Lions P L . The concentration-compactness principle in the calculus of variation. The locally compact case, Part Ⅱ. Ann Inst H Poincaré Anal Non Linéaire, 1984, 1, 223- 283
doi: 10.1016/S0294-1449(16)30422-X |
[1] | Yaling Han,Jianlin Xiang. Existence and Asymptotic Behavior of Ground State for Fractional p-Laplacian Equations [J]. Acta mathematica scientia,Series A, 2020, 40(6): 1622-1633. |
[2] | Xiaomeng Huang,Yimin Zhang. Existence of Ground States for a Class of Modified Gross-Pitaevskii Equations [J]. Acta mathematica scientia,Series A, 2020, 40(4): 850-856. |
[3] | Yanfang Mei,Youjun Wang. Three Types of Solutions for a Class of Nonlinear Schrödinger Equations [J]. Acta mathematica scientia,Series A, 2019, 39(5): 1087-1093. |
[4] | Liwan Fang,Wennian Huang,Minqing Wang. Ground-State Solutions for Schrödinger-Maxwell Equations in the Critical Growth [J]. Acta mathematica scientia,Series A, 2019, 39(3): 475-483. |
[5] | Yu Chun, Wan Youyan. The Existence of Ground State to the Generalized Choquard-Pekar Equation with Superlinear Nonlinearities [J]. Acta mathematica scientia,Series A, 2018, 38(2): 276-283. |
[6] | Qin Dongdong, Li Yunyang, Tang Xianhua. Schrödinger Equation with Asymptotically Linear Nonlinearity and Spectrum Point Zero [J]. Acta mathematica scientia,Series A, 2016, 36(6): 1103-1116. |
[7] | Ma Qiaozhen, Xu Ling, Zhang Yanjun. Asymptotic Behavior of the Solution for the Nonclassical Diffusion Equations with Fading Memory on the Whole Space R3 [J]. Acta mathematica scientia,Series A, 2016, 36(1): 36-48. |
[8] | Xu Na, Ma Shiwang. Ground State Solutions for A Periodic Schrödinger Equation with Critical Sobolev Exponent [J]. Acta mathematica scientia,Series A, 2015, 35(4): 651-655. |
[9] | Deng Yihua, Luo Liping, Zhou Lijun. Existence of A Ground State Solution for A Class of Superlinear p-Laplace Equations with Negative Potential Functions [J]. Acta mathematica scientia,Series A, 2015, 35(3): 578-586. |
[10] | Zhang Yanjun, Ma Qiaozhen. Attractors for the Nonclassical Diffusion Equations with Critical Nonlinearity on the Whole Space R3 [J]. Acta mathematica scientia,Series A, 2015, 35(2): 294-305. |
[11] | ZHANG Jian, TANG Xian-Hua, ZHANG Wen. ON GROUND STATE SOLUTIONS FOR SUPERLINEAR DIRAC EQUATION [J]. Acta mathematica scientia,Series A, 2014, 34(3): 840-850. |
[12] | Gan Zaihui ;Zhang Jian. Standing Waves for a Class of Coupled Nonlinear Klein-Gordon Equations [J]. Acta mathematica scientia,Series A, 2006, 26(4): 559-569. |
[13] | Gan Zaihui;Zhang Jian. Sharp Conditions of Global Existence for the Generalized Davey-Stewartson System in Three Dimensional Space [J]. Acta mathematica scientia,Series A, 2006, 26(1): 87-092. |
|