Acta mathematica scientia,Series A ›› 2021, Vol. 41 ›› Issue (3): 629-641.
Previous Articles Next Articles
Yanghai Yu1(),Jinlu Li2,3(),Xing Wu4,*()
Received:
2020-06-11
Online:
2021-06-26
Published:
2021-06-09
Contact:
Xing Wu
E-mail:yuyanghai214@sina.com;lijinlu@gnnu.cn;ny2008wx@163.com
Supported by:
CLC Number:
Yanghai Yu,Jinlu Li,Xing Wu. A Class of Global Large Solutions to 3D Navier-Stokes-Korteweg Equations[J].Acta mathematica scientia,Series A, 2021, 41(3): 629-641.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
1 |
Bresch D , Desjardins B , Lin C . On some compressible fluid models: Korteweg, lubrication, and shallow water systems. Commmun Part Diffe Equ, 2003, 28, 843- 868
doi: 10.1081/PDE-120020499 |
2 | Cahn J , Hilliard J . Free energy of a nonuniform system, I. Interfacial free energy. J Chem Phys, 1998, 28, 258- 267 |
3 |
Dunn J , Serrin J . On the thermomechanics of interstitial working. Arch Ration Mech Anal, 1985, 88, 95- 133
doi: 10.1007/BF00250907 |
4 |
Danchin R , Muchab P . Compressible Navier-Stokes system: Large solutions and incompressible limit. Adv Math, 2017, 320, 904- 925
doi: 10.1016/j.aim.2017.09.025 |
5 |
Fang D , Zhang T , Zi R . Global solutions to the isentropic compressible Navier-Stokes equations with a class of large initial data. SIAM J Math Anal, 2018, 50 (5): 4983- 5026
doi: 10.1137/17M1122062 |
6 |
Gurtin M , Poligone D , Vinals J . Two-phases binary fluids and immiscible fluids described by an order parameter. Math Models Methods Appl Sci, 1996, 6, 815- 831
doi: 10.1142/S0218202596000341 |
7 |
Hattori H , Li D . Solutions for two-dimensional system for materials of Korteweg type. SIAM J Math Anal, 1994, 25, 85- 98
doi: 10.1137/S003614109223413X |
8 |
Hattori H , Li D . Global solutions of a high-dimensional system for Korteweg materials. J Math Anal Appl, 1996, 198, 84- 97
doi: 10.1006/jmaa.1996.0069 |
9 |
Haspot B . Existence of global strong solution for Korteweg system with large infinite energy initial data. J Math Anal Appl, 2016, 438, 395- 443
doi: 10.1016/j.jmaa.2016.01.047 |
10 |
Haspot B . Global strong solution for the Korteweg system with quantum pressure in dimension N ≥ 2. Math Ann, 2017, 367, 667- 700
doi: 10.1007/s00208-016-1391-4 |
11 |
Haspot B . Global existence of strong solution for viscous shallow water system with large initial data on the irrotational part. J Differ Equ, 2017, 262, 4931- 4978
doi: 10.1016/j.jde.2017.01.010 |
12 |
Haspot B . Existence of global weak solution for compressible fluid models of Korteweg type. J Math Fluid Mech, 2011, 13, 223- 249
doi: 10.1007/s00021-009-0013-2 |
13 | Hoff D . Global existence for 1D, compressible, isentropic Navier-Stokes equations with large initial data. Trans Amer Math Soc, 1987, 303 (1): 169- 181 |
14 |
Hoff D . Global solutions of the Navier-Stokes equations for multidimensional, compressible flow with discontinuous initial data. J Differ Equ, 1995, 120, 215- 254
doi: 10.1006/jdeq.1995.1111 |
15 |
Hoff D . Strong convergence to global solutions for multidimensional flows of compressible, viscous fluids with polytropic equations of state and discontinuous initial data. Arch Ration Mech Anal, 1995, 132, 1- 14
doi: 10.1007/BF00390346 |
16 |
Hoff D . Discontinuous solutions of the Navier-Stokes equations for multidimensional heat-conducting flow. Arch Ration Mech Anal, 1997, 139, 303- 354
doi: 10.1007/s002050050055 |
17 |
Huang X , Li J . Global well-posedness of classical solutions to the Cauchy problem of two-dimesional baratropic compressible Navier-Stokes system with vacuum and large initial data. J Math Pures Appl, 2016, 106, 123- 154
doi: 10.1016/j.matpur.2016.02.003 |
18 |
Jiu Q , Wan Y , Xin Z . Global classical solution to two-dimensional compressible Navier-Stokes equations with large data in $ \mathbb{R}.2$. Phys D, 2018, 376/377, 180- 194
doi: 10.1016/j.physd.2017.12.006 |
19 |
Jüngel A . Global weak solutions to compressible Navier-Stokes equations for quantum fluids. SIAM J Math Anal, 2010, 42, 1025- 1045
doi: 10.1137/090776068 |
20 |
Kotschote M . Strong solutions for a compressible fluid model of Korteweg type. Ann Inst H Poincaré Anal Nonlinéaire, 2008, 25, 679- 696
doi: 10.1016/j.anihpc.2007.03.005 |
21 |
Kazhikhov A , Shelukhin V . Unique global solution with respect to time of initial-boundary value problems for one-dimensional equations of a viscous gas. J Appl Math Mech, 1977, 41 (2): 273- 282
doi: 10.1016/0021-8928(77)90011-9 |
22 |
Lei Z , Lin F , Zhou Y . Structure of helicity and global solutions of incompressible Navier-Stokes equation. Arch Ration Mech Anal, 2015, 218, 1417- 1430
doi: 10.1007/s00205-015-0884-8 |
23 |
Li J , Yu Y , Zhu W . A class large solution of the 3D Hall-magnetohydrodynamic equations. J Differ Equ, 2020, 268, 5811- 5822
doi: 10.1016/j.jde.2019.11.020 |
24 | Mellet A , Vasseur A . Existence and uniqueness of global strong solutions for one dimensional compressible Navier-Stokes equations. SIAM J Math Anal, 2007, 39 (4): 1344- 1365 |
25 | Majda A , Bertozzi A . Vorticity and Incompressible Flow. Cambridge: Cambridge University Press, 2001 |
26 | Matsumura A, Nishida T. The initial value problem for the equations of motion of viscous and heat-conductive gases. J Math Kyoto Univ, 20(1): 67-104 |
27 |
Perepelitsa M . On the global existence of weak solutions for the Navier-Stokes equations of compressible fluid flows. SIAM J Math Anal, 2006, 38 (4): 1126- 1153
doi: 10.1137/040619119 |
28 | Serre D . Solutions faibles globales des équations de Navier-Stokes pour un fluide compressible. C R Acad Sci Paris Sér I Math, 1986, 303 (13): 639- 642 |
29 | Serre D . Sur l'équation monodimensionnelle d'un fluide visqueux, compressible et conducteur de chaleur. C R Acad Sci Paris Sér I Math, 1986, 303 (14): 703- 706 |
30 | Triebel H . Theory of Function Spaces. Basel: Birkhäuser, 1983 |
31 |
Vaigant V , Kazhikhov A . On existence of global solutions to the two-dimensional Navier-Stokes equations for a compressible viscous fluid. J Sib Math, 1995, 36 (6): 1283- 1316
doi: 10.1007/BF02106835 |
32 |
Tan Z , Wang Y . Large time behavior of solutions to the isentropic compressible fluid models of Korteweg type in $ \mathbb{R}.3$. Commun Math Sci, 2012, 10 (4): 1207- 1223
doi: 10.4310/CMS.2012.v10.n4.a9 |
[1] | Xingqian Ling,Weiguo Zhang. Periodic Wave Solutions, Solitary Wave Solutions and Their Relationship for Generalized Symmetric Regularized Long Wave Equation with Two Nonlinear Terms [J]. Acta mathematica scientia,Series A, 2021, 41(3): 603-628. |
[2] | Guo Shangxi. Existence of Global Strong Solutions for Initial Value Problems of One-Dimensional Compressible Navier-Stokes Equations [J]. Acta mathematica scientia,Series A, 2021, 41(3): 642-651. |
[3] | Cheng Yiqun, Teng Kaimin. Positive Ground State Solutions for Nonlinear Critical Kirchhoff Type Problem [J]. Acta mathematica scientia,Series A, 2021, 41(3): 666-685. |
[4] | Lu Shiping, Zhou Shile, Yu Xingchen. Periodic Solutions for a Singular Liénard Equation with Sign-Changing Weight Functions [J]. Acta mathematica scientia,Series A, 2021, 41(3): 686-701. |
[5] | Yang Xianyong, Tang Xianhua, Gu Guangze. Existence and Multiplicity of Solutions for a Fractional Choquard Equation with Critical or Supercritical Growth [J]. Acta mathematica scientia,Series A, 2021, 41(3): 702-722. |
[6] | Jia Xiaoyao, Lou Zhenluo. Existence of Multiple Non-Radial Positive Solutions of a Hénon Type Elliptic System [J]. Acta mathematica scientia,Series A, 2021, 41(3): 723-728. |
[7] | Zhong Penghong, Chen Xingfa. Global Smoothness of the Plane Wave Solutions for Landau-Lifshitz Equation [J]. Acta mathematica scientia,Series A, 2021, 41(3): 729-739. |
[8] | Wu Bin, Chen Qun. Lipschitz Stability for a Transport Coefficient Inverse Problem of a Linearly Coupled Korteweg-de Vries System [J]. Acta mathematica scientia,Series A, 2021, 41(3): 740-761. |
[9] | Xie Qianqian, Zhai Xiaoping, Dong Boqing. Optimal Decay for the N-Dimensional Incompressible Oldroyd-B Model Without Damping Mechanism [J]. Acta mathematica scientia,Series A, 2021, 41(3): 762-769. |
[10] | Leta Temesgen Desta,Wenjun Liu,Jian Ding. Dynamics of Traveling Wave Solutions to Fully Nonlinear Heavy Ion-Acoustic Degenerate Relativistic Quantum Plasmas [J]. Acta mathematica scientia,Series A, 2021, 41(2): 496-506. |
[11] | Hongqiao Li. Liouville Type Theorem for Hartree Equations in Half Spaces [J]. Acta mathematica scientia,Series A, 2021, 41(2): 388-401. |
[12] | Xiaoming Peng,Xiaoxiao Zheng,Yadong Shang. Pullback Attractors for Navier-Stokes-Voigt Equations with Nonlinear Damping [J]. Acta mathematica scientia,Series A, 2021, 41(2): 357-369. |
[13] | Qing Chen. Optimal Time Decay Rate of the Highest Derivative of Solutions to the Compressible Navier-Stokes Equations [J]. Acta mathematica scientia,Series A, 2021, 41(2): 345-356. |
[14] | Lianhong Guo. Research on the Inviscid Limit for Boussinesq Equations [J]. Acta mathematica scientia,Series A, 2021, 41(1): 91-99. |
[15] | Juan Wang,Jie Zhao. Homogenization of the Oscillating Robin Mixed Boundary Value Problems [J]. Acta mathematica scientia,Series A, 2021, 41(1): 81-90. |
|