Acta mathematica scientia,Series A ›› 2021, Vol. 41 ›› Issue (2): 415-426.
Previous Articles Next Articles
Received:
2020-04-29
Online:
2021-04-26
Published:
2021-04-29
Contact:
Chengbo Zhai
E-mail:cbzhai@sxu.edu.cn
Supported by:
CLC Number:
Jing Ren,Chengbo Zhai. Analysis of Impulsive Tempered Fractional Differential System via Variational Approach[J].Acta mathematica scientia,Series A, 2021, 41(2): 415-426.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
1 | Almeida R , Morgado M L . Analysis and numerical approximation of tempered fractional calculus of variations problems. J Comput Appl Math, 2019, 361, 1- 12 |
2 | Agarwal R , Hristova S , O'Regan D . Non-Instantaneous Impulses in Differential Equations. Springer, Cham, 2017 |
3 | Chipot M . Elements of Nonlinear Analysis. Boston: Birkhauser Basel, 2000 |
4 |
Heidarkhani S , Cabada A , Afrouzi G A , Moradi S , Caristi G . A variational approach to perturbed impulsive fractional differential equations. J Comput Appl Math, 2018, 341, 42- 60
doi: 10.1016/j.cam.2018.02.033 |
5 |
Jiao F , Zhou Y . Existence of solutions for a class of fractional boundary value problems via critical point theory. Comput Math Appl, 2011, 62, 1181- 1199
doi: 10.1016/j.camwa.2011.03.086 |
6 |
Khaliq A , ur Rehman M . On variational methods to non-instantaneous impulsive fractional differential equation. Appl Math Lett, 2018, 83, 95- 102
doi: 10.1016/j.aml.2018.03.014 |
7 | Kilbas A , Srivastava H , Trujillo J . Theory and Applications of Fractional Differential Equations. Amsterdam: Elsevier Science, 2006 |
8 |
Li D P , Chen F Q , An Y K . The existence of solutions for an impulsive fractional coupled system of (p, q)-Laplacian type without the Ambrosetti-Rabinowitz condition. Math Methods Appl Sci, 2019, 42, 1449- 1464
doi: 10.1002/mma.5435 |
9 |
Riewe F . Nonconservative Lagrangian and Hamiltonian mechanics. Phys Rev E, 1996, 53, 1890
doi: 10.1103/PhysRevE.53.1890 |
10 |
Sabzikar F , Meerschaert M M , Chen J H . Tempered fractional calculus. J Comput Phys, 2015, 293, 14- 28
doi: 10.1016/j.jcp.2014.04.024 |
11 |
Tian Y , Zhang M . Variational method to differential equations with instantaneous and non-instantaneous impulses. Appl Math Lett, 2019, 94, 160- 165
doi: 10.1016/j.aml.2019.02.034 |
12 | Yang D , Wang J R , O'Regan D . A class of nonlinear non-instantaneous impulsive differential equations involving parameters and fractional order. Appl Math Comput, 2018, 321, 654- 671 |
13 |
姚旺进. 基于变分方法的脉冲微分方程耦合系统解的存在性和多重性. 数学物理学报, 2020, 40A (3): 705- 716
doi: 10.3969/j.issn.1003-3998.2020.03.017 |
Yao W J . Existence and multiplicity of solutions for a coupled system of impulsive differential equations via variational method. Acta Math Sci, 2020, 40A (3): 705- 716
doi: 10.3969/j.issn.1003-3998.2020.03.017 |
|
14 |
Zhang W , Liu W B . Variational approach to fractional Dirichlet problem with instantaneous and non-instantaneous impulses. Appl Math Lett, 2020, 99, 105993
doi: 10.1016/j.aml.2019.07.024 |
15 | Zhao Y L , Chen H B , Xu C J . Nontrivial solutions for impulsive fractional differential equations via Morse theory. Appl Math Comput, 2017, 307, 170- 179 |
|