Acta mathematica scientia,Series A ›› 2021, Vol. 41 ›› Issue (2): 402-414.
Previous Articles Next Articles
Jiafa Xu1,*(),Honglin Luo1(),Lishan Liu2()
Received:
2020-03-08
Online:
2021-04-26
Published:
2021-04-29
Contact:
Jiafa Xu
E-mail:xujiafa292@sina.com;luohonglin@cqnu.edu.cn;mathlls@163.com
Supported by:
CLC Number:
Jiafa Xu,Honglin Luo,Lishan Liu. Positive Solutions for a Class of Fractional Difference Equations Boundary Value Problems with p-Laplacian Operator[J].Acta mathematica scientia,Series A, 2021, 41(2): 402-414.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
1 | 郑祖庥. 分数微分方程的发展和应用. 徐州师范大学学报, 2008, 26 (2): 1- 10 |
Zheng Z X . On the developments and applications of fractional differential equations. J of Xuzhou Normal Univ, 2008, 26 (2): 1- 10 | |
2 | Kilbas A , Srivastava H , Trujillo J . Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies, Vol 204. Amsterdam: Elsevier Science, 2006 |
3 | Podlubny I . Fractional Differential Equations. Mathematics in Science and Engineering, Vol 198. San Diego: Academic Press, 1999 |
4 | Samko S , Kilbas A , Marichev O . Fractional Integrals and Derivatives: Theory and Applications. Yverdon: Gordon and Breach, 1993 |
5 | 程金发. 分数阶差分方程理论. 南强丛书第五辑 厦门大学出版社, 2011 |
Cheng J F . The Theory of Fractional Order Difference Equations. Xiamen: Xiamen University Press, 2011 | |
6 | Goodrich C S , Peterson A C . Discrete Fractional Calculus. New York: Springer, 2015 |
7 |
Goodrich C S . On a first-order semipositone discrete fractional boundary value problem. Archiv der Mathematik, 2012, 99 (6): 509- 518
doi: 10.1007/s00013-012-0463-2 |
8 |
Xu J , Goodrich C S , Cui Y . Positive solutions for a system of first-order discrete fractional boundary value problems with semipositone nonlinearities. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales Serie A: Matemáticas, 2019, 113 (2): 1343- 1358
doi: 10.1007/s13398-018-0551-7 |
9 |
Goodrich C S . Systems of discrete fractional boundary value problems with nonlinearities satisfying no growth conditions. Journal of Difference Equations and Applications, 2015, 21 (5): 437- 453
doi: 10.1080/10236198.2015.1013537 |
10 |
Goodrich C S . On semipositone discrete fractional boundary value problems with non-local boundary conditions. Journal of Difference Equations and Applications, 2013, 19 (11): 1758- 1780
doi: 10.1080/10236198.2013.775259 |
11 |
Goodrich C S . On discrete sequential fractional boundary value problems. Journal of Mathematical Analysis and Applications, 2012, 385 (1): 111- 124
doi: 10.1016/j.jmaa.2011.06.022 |
12 |
Atici Ferhan M , Senguel Sevgi . Modeling with fractional difference equations. J Math Anal Appl, 2010, 369 (1): 1- 9
doi: 10.1016/j.jmaa.2010.02.009 |
13 | Cheng J. On the definitions of fractional sum and difference on non-uniform lattices. 2019, arXiv: 1910.05130 |
14 |
徐家发. 具有半正非线性项的分数阶差分方程组边值问题的正解. 数学物理学报, 2020, 40A (1): 132- 145
doi: 10.3969/j.issn.1003-3998.2020.01.010 |
Xu J F . Positive solutions for a system of boundary value problems of fractional difference equations involving semipositone nonlinearities. Acta Mathematica Scientia, 2020, 40A (1): 132- 145
doi: 10.3969/j.issn.1003-3998.2020.01.010 |
|
15 | 王金华, 向红军. 一类分数阶p-Laplacian差分方程边值问题正解的存在性. 高校应用数学学报, 2018, 33 (1): 67- 78 |
Wang J H , Xiang H J . Research of solutions for a boundary value problem of fractional difference equation with p-Laplacian operator. Applied Mathematics-A Journal of Chinese Universities, 2018, 33 (1): 67- 78 | |
16 |
Zhao Y , Sun S , Zhang Y . Existence and uniqueness of solutions to a fractional difference equation with p-Laplacian operator. Journal of Applied Mathematics and Computing, 2017, 54 (1/2): 183- 197
doi: 10.1007/s12190-016-1003-1 |
17 |
Cheng W , Xu J , O'Regan D , Cui Y . Positive solutions for a nonlinear discrete fractional boundary value problem with a p-Laplacian operator. Journal of Applied Analysis and Computation, 2019, 9 (5): 1959- 1972
doi: 10.11948/20190051 |
18 | Lv W. Existence of solutions for discrete fractional boundary value problems with a p-Laplacian operator. Advances in Difference Equations, 2012, Article ID: 163 |
19 | Lv W. Solvability for discrete fractional boundary value problems with a p-Laplacian operator. Discrete Dynamics in Nature and Society, 2013, Article ID: 679290 |
20 |
Sitthiwirattham T . Boundary value problem for p-Laplacian Caputo fractional difference equations with fractional sum boundary conditions. Mathematical Methods in the Applied Sciences, 2016, 39 (6): 1522- 1534
doi: 10.1002/mma.3586 |
21 | Guo D , Lakshmikantham V . Nonlinear Problems in Abstract Cones. Orlando: Academic Press, 1988 |
22 | Ding Y, O'Regan D. Positive solutions for a second-order p-Laplacian impulsive boundary value problem. Advances in Difference Equations, 2012, Article ID: 159 |
|