Acta mathematica scientia,Series A ›› 2021, Vol. 41 ›› Issue (2): 357-369.
Previous Articles Next Articles
Xiaoming Peng1,Xiaoxiao Zheng2,Yadong Shang3,*()
Received:
2020-03-23
Online:
2021-04-26
Published:
2021-04-29
Contact:
Yadong Shang
E-mail:gzydshang@126.com
CLC Number:
Xiaoming Peng,Xiaoxiao Zheng,Yadong Shang. Pullback Attractors for Navier-Stokes-Voigt Equations with Nonlinear Damping[J].Acta mathematica scientia,Series A, 2021, 41(2): 357-369.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
1 | Oskolkov A P . The uniqueness and solvability in the large of boundary value problems for the equations of motion of aqueous solutions of polymers. Zap Nauchn Semin LOMI, 1973, 38, 98- 136 |
2 |
Cao Y , Lunasin E M , Titi E S . Global well-posedness of the three dimensional viscous and inviscid simplified Bardina turbulence models. Commun Math Sci, 2006, 4 (4): 823- 848
doi: 10.4310/CMS.2006.v4.n4.a8 |
3 |
Kalantarov V K , Titi E S . Global attractors and determining modes for the 3D Navier-Stokes-Voigt equations. Chin Ann Math Ser B, 2009, 30 (6): 697- 714
doi: 10.1007/s11401-009-0205-3 |
4 |
Kalantarov V K , Levant B , Titi E S . Gevrey regularity of the global attractor of the 3d Navier-Stokes-Voigt equations. J Nonlinear Sci, 2009, 19 (2): 133- 152
doi: 10.1007/s00332-008-9029-7 |
5 | Yue G C , Zhong C K . Attractors for autonomous and nonautonomous 3d Navier-Stokes-Voigt equations. Discrete Contin Dyn Syst Ser B, 2011, 16 (3): 985- 1002 |
6 |
Dou Y W , Yang X G , Qin Y M . Remarks on uniform attractors for the 3d nonautonomous Navier-Stokes-Voigt equations. Bound Value Probl, 2011, 2011 (1): 49
doi: 10.1186/1687-2770-2011-49 |
7 |
García-luengo J , Marín-Rubio P , Real J . Pullback attractors for three-dimensional non-autonomous Navier-Stokes-Voigt equations. Nonlinearity, 2012, 25 (4): 905- 930
doi: 10.1088/0951-7715/25/4/905 |
8 |
Zelati M C , Gal C G . Singular limits of Voigt models in fluid dynamics. J Math Fluid Mech, 2015, 17 (2): 233- 259
doi: 10.1007/s00021-015-0201-1 |
9 | Yang X G , Li L , Lu Y J . Regularity of uniform attractor for 3d non-autonomous Navier-Stokes-Voigt equation. Appl Math Comput, 2018, 334, 11- 29 |
10 | Niche C J . Decay characterization of solutions to Navier-Stokes-Voigt equations in terms of the initial datum. J Differential Equations, 2016, 260 (8): 4440- 4453 |
11 |
Anh C T , Trang P T . Decay rate of solutions to 3d Navier Stokes Voigt equations in $H^m$ spaces. Appl Math Lett, 2016, 61, 1- 7
doi: 10.1016/j.aml.2016.04.015 |
12 |
Qin Y , Yang X , Liu X . Averaging of a 3d Navier Stokes Voigt equation with singularly oscillating forces. Nonlinear Anal RWA, 2012, 13 (2): 893- 904
doi: 10.1016/j.nonrwa.2011.08.025 |
13 |
Anh C T , Trang P T . On the regularity and convergence of solutions to the 3d Navier Stokes Voigt equations. Comput Math Appl, 2017, 73 (4): 601- 615
doi: 10.1016/j.camwa.2016.12.023 |
14 |
Celebi A O , Kalantarov V K , Polat M . Global attractors for 2d Navier Stokes Voigt equations in an unbounded domain. Appl Anal, 2009, 88 (3): 381- 392
doi: 10.1080/00036810902766682 |
15 |
Anh C T , Trang P T . Pull-back attractors for three-dimensional Navier-Stokes-Voigt equations in some unbounded domains. Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 2013, 143 (2): 223- 251
doi: 10.1017/S0308210511001491 |
16 |
Cai X J , Jiu Q S . Weak and strong solutions for the incompressible Navier-Stokes equations with damping. J Math Anal Appl, 2008, 343 (2): 799- 809
doi: 10.1016/j.jmaa.2008.01.041 |
17 |
Zhang Z J , Wu X L , Lu M . On the uniqueness of strong solution to the incompressible Navier-Stokes equations with damping. J Math Anal Appl, 2011, 377 (1): 414- 419
doi: 10.1016/j.jmaa.2010.11.019 |
18 |
Zhou Y . Regularity and uniqueness for the 3d incompressible Navier Stokes equations with damping. Appl Math Lett, 2012, 25 (11): 1822- 1825
doi: 10.1016/j.aml.2012.02.029 |
19 |
Jia Y , Zhang X W , Dong B Q . The asymptotic behavior of solutions to three-dimensional Navier-Stokes equations with nonlinear damping. Nonlinear Anal RWA, 2011, 12 (3): 1736- 1747
doi: 10.1016/j.nonrwa.2010.11.006 |
20 |
Jiang Z H , Zhu M X . The large time behavior of solutions to 3d Navier-Stokes equations with nonlinear damping. Math Methods Appl Sci, 2012, 35 (1): 97- 102
doi: 10.1002/mma.1540 |
21 |
Song X L , Hou Y R . Attractors for the three-dimensional incompressible Navier-Stokes equations with damping. Discrete Contin Dyn Syst, 2011, 31 (1): 239- 252
doi: 10.3934/dcds.2011.31.239 |
22 |
Song X L , Hou Y R . Uniform attractors for three-dimensional Navier-Stokes equations with nonlinear damping. J Math Anal Appl, 2015, 422 (1): 337- 351
doi: 10.1016/j.jmaa.2014.08.044 |
23 | Song X L, Liang F, Wu J H. Pullback ${\cal D}$-attractors for three-dimensional Navier-Stokes equations with nonlinear damping. Bound Value Probl, 2016, Article number: 145 |
24 | Pardo D , José V , Ángel G . Global attractors for weak solutions of the three-dimensional Navier-Stokes equations with damping. Discrete Contin Dyn Syst, 2019, 24 (8): 3569- 3590 |
25 | Li F , You B . Pullback exponential attractors for the three dimensional non-autonomous Navier-Stokes equations with nonlinear damping. Discrete Contin Dyn Syst, 2020, 25 (1): 55- 80 |
26 |
Liu H , Lin L , Sun C F , Xiao Q K . The exponential behavior and stabilizability of the stochastic 3d Navier-Stokes equations with damping. Reviews in Mathematical Physics, 2019, 31 (7): 1950023
doi: 10.1142/S0129055X19500235 |
27 |
Di Plinio F , Giorgini A , Pata V , Temam R . Navier-Stokes-Voigt equations with memory in 3d lacking instantaneous kinematic viscosity. J Nonlinear Sci, 2018, 28, 653- 686
doi: 10.1007/s00332-017-9422-1 |
28 |
Wang X Q , Qin Y M . Three-dimensional Navier-Stokes-Voigt equation with a memory and the Brinkman-Forchheimer damping term. Math Methods Appl Sci, 2019,
doi: 10.1002/mma.5710 |
29 |
Lv W B , Lu L Q , Wu S H . Decay characterization of the solutions to the Navier-Stokes-Voigt equations with damping. J Math Phys, 2020, 61, 081508
doi: 10.1063/1.5096875 |
30 | Rosa R . The global attractor for the 2d Navier-Stokes flow on some unbounded domains. Nonlinear Anal, 2001, 32 (1): 71- 85 |
31 |
Marín-Rubio P , Real J . On the relation between two different concepts of pullback attractors for non-autonomous dynamical systems. Nonlinear Anal, 2009, 71 (9): 3956- 3963
doi: 10.1016/j.na.2009.02.065 |
32 |
García-Luengo J , Marín-Rubio P , Real J . Pullback attractors in V for non-autonomous 2d-Navier-Stokes equations and their tempered behaviour. J Differential Equations, 2012, 252 (8): 4333- 4356
doi: 10.1016/j.jde.2012.01.010 |
33 | Lions J L. Quelques Méthodes de Résolution des Problémes aux Limites Nonlineaires. Paris: Dunod, 1969 |
[1] | Xuanxuan Xi,Mimi Hou,Xianfeng Zhou. Invariance Sets and Well-Posedness for the Weak Solution of Non-Autonomous Caputo Fractional Evolution Equation [J]. Acta mathematica scientia,Series A, 2021, 41(1): 149-165. |
[2] | Kaixuan Zhu,Yongqin Xie,Feng Zhou,Xijun Deng. Pullback Attractors for the Complex Ginzburg-Landau Equations with Delays [J]. Acta mathematica scientia,Series A, 2020, 40(5): 1341-1353. |
[3] | Zongfei Han,Shengfan Zhou. Random Exponential Attractor for Non-Autonomous Stochastic FitzHugh-Nagumo System with Multiplicative Noise in R3 [J]. Acta mathematica scientia,Series A, 2020, 40(3): 756-783. |
[4] | Bo Zhu,Lishan Liu. Existence and Uniqueness of the Mild Solutions for a Class of Fractional Non-Autonomous Evolution Equations with Impulses [J]. Acta mathematica scientia,Series A, 2019, 39(1): 105-113. |
[5] | Yang Xinguang, Zhao Mingxia, Hou Wei. Upper Semi-Continuity of Pullback Attractors for the 2D Non-Autonomous Navier-Stokes Equations with Weak Damping [J]. Acta mathematica scientia,Series A, 2016, 36(4): 722-739. |
[6] | ZHU Xu-Sheng, LI Fang-E. The Global Solutions of the Compressible Euler Equations With Nonlinear Damping in 3-Dimensions [J]. Acta mathematica scientia,Series A, 2014, 34(5): 1111-1122. |
[7] | WANG Xiao-Hu, LI Shu-Yong. Pullback Attractors for Non-autonomous 2D Navier-Stokes Equations with Linear Dampness in Some Unbounded Domains [J]. Acta mathematica scientia,Series A, 2009, 29(4): 873-881. |
[8] | Li Junping; Li Min. Random Non-autonomous Logistic Models [J]. Acta mathematica scientia,Series A, 2008, 28(5): 863-869. |
[9] |
Xu Wenxiong; Zhang Tailei; Xu Zongben.
Existence of Positive Periodic Solutions of a Prey-Predator System with Several Delays [J]. Acta mathematica scientia,Series A, 2008, 28(1): 39-045. |
|