Acta mathematica scientia,Series A ›› 2021, Vol. 41 ›› Issue (2): 357-369.

Previous Articles     Next Articles

Pullback Attractors for Navier-Stokes-Voigt Equations with Nonlinear Damping

Xiaoming Peng1,Xiaoxiao Zheng2,Yadong Shang3,*()   

  1. 1 School of Statistics and Mathematics, Guangdong University of Finance and Economics, Guangzhou 510320
    2 School of Mathematical Sciences, Qufu Normal University, Shandong Qufu 273155
    3 School of Mathematics and Information Science, Guangzhou University, Guangzhou 510006
  • Received:2020-03-23 Online:2021-04-26 Published:2021-04-29
  • Contact: Yadong Shang E-mail:gzydshang@126.com

Abstract:

In this paper, we are concerned with the long-time behavior of solutions to the non-autonomous Navier-Stokes-Voigt equations with nonlinear damping. Firstly, we prove the existence and uniqueness of global weak solutions by the Galerkin method. Then, we focus on studying the existence of pullback attractors by using an energy method, which is more simple than the weak continuous method to establish the uniformly asymptotical compactness. In addition, some relationships between the attractors for the universe of fixed bounded sets and those associated to a universe given by another tempered condition are established.

Key words: Pullback attractors, Non-autonomous, Navier-Stokes-Voigt equation, Nonlinear damping

CLC Number: 

  • O175.26
Trendmd