Acta mathematica scientia,Series A ›› 2021, Vol. 41 ›› Issue (2): 313-325.
Previous Articles Next Articles
Yulong Deng1,2(),Shunchao Long2,*()
Received:
2020-05-03
Online:
2021-04-26
Published:
2021-04-29
Contact:
Shunchao Long
E-mail:yuldeng@163.com;sclong@xtu.edu.cn
Supported by:
CLC Number:
Yulong Deng,Shunchao Long. ${A_{p}(\varphi)}$ Weights, Pseudo-Differential Operators and Their Commutators[J].Acta mathematica scientia,Series A, 2021, 41(2): 313-325.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
1 | Alvarez J , Hounie J . Estimates for the kernel and continuity properties of pseudo-differential operators. Ark Mat, 1990, 28 (1): 1- 22 |
2 |
Calderón A P , Vaillancourt R . A class of bounded pseudo-differential operators. Proc Nat Acad Sci USA, 1972, 69, 1185- 1187
doi: 10.1073/pnas.69.5.1185 |
3 | Chanillo S , Torchinsky A . Sharp function and weighted $L^{p}$ estimates for a class of pseudodifferential operators. Ark Mat, 1986, 24 (1): 1- 25 |
4 | Coifman R , Rochberg R , Weiss G . Factorization theorems for Hardy spaces in several variables. Ann Math, 1976, 103 (2): 611- 635 |
5 |
Deng Y , Chen Z , Long S . Double weighted commutators theorem for pseudo-differential operators with smooth symbols. Czech Math J, 2020,
doi: 10.21136/CMJ.2020.0246-19 |
6 |
Fefferman C . $L^{p}$ bounds for pseudo-differential operators. Israel J Math, 1973, 14, 413- 417
doi: 10.1007/BF02764718 |
7 | García-Cuerva J, Rubio De Francia J L. Weighted Norm Inequalities and Related Topics. Amsterdam: North-Holland Publishing Co, 1985 |
8 | Hörmander L . Pseudo-differential operators and hypoelliptic equations. Proc Symp Pure Math, 1961, 4, 415- 426 |
9 | John F , Nirenberg L . On functions of bounded mean oscillation. Comm Pure Appl Math, 1967, 10, 138- 183 |
10 |
Hounie J , Kapp R A S . Pseudodifferential operators on local Hardy spaces. J Fourier Anal Appl, 2009, 15 (2): 153- 178
doi: 10.1007/s00041-008-9021-5 |
11 | Hung H D , Ky L D . An Hardy estimate for commutators of pseudo-differential operators. Taiwanese J Math, 2015, 19 (4): 1097- 1109 |
12 | Journé J . Calderón-Zygmund Operators, Pseudo-Differential Operators and the Cauchy Integral of Calderón. Berlin: Springer-Verlag, 1983 |
13 |
Kohn J J , Nirenberg L . An algebra of pseudo-differential operators. Comm Pure Appl Math, 1965, 18, 269- 305
doi: 10.1002/cpa.3160180121 |
14 | Laptev A . Spectral asympotics of a class of Fourier integral operators. Trudy Moskov Mat Obshch, 1981, 43, 92- 115 |
15 |
Michalowski N , Rule D J , Staubach W . Weighted $L^{p}$ boundedness of pseudodifferential operators and applications. Canad Math Bull, 2012, 55 (3): 555- 570
doi: 10.4153/CMB-2011-122-7 |
16 |
Miller N . Weighted Soblev spaces and pseudodifferential operators with smooth sybols. Trans Amer Math Soc, 1982, 269 (1): 91- 109
doi: 10.1090/S0002-9947-1982-0637030-4 |
17 |
Pérez C . Endpoint estimates for commutators of singular integral operators. J Func Anal, 1995, 128, 163- 185
doi: 10.1006/jfan.1995.1027 |
18 | Stein E M . Harmonic Analysis: Real Variable Methods, Orthogonality and Oscillatory Integrals. Princeton: Princeton University Press, 1993 |
19 |
Tang L . Weighted norm inequalities for pseudo-differential operators with smooth symbols and their commutators. J Funct Anal, 2012, 262 (4): 1603- 1629
doi: 10.1016/j.jfa.2011.11.016 |
20 | Wu R , Wang S . $A_{p}(\phi)$ weightes, BMO($\phi$), and Calderón-Zygmund operators of $\phi$-type. J Funct Spaces, 2018, 2018, 1- 9 |
[1] | Guanghui Lu,Shuangping Tao. θ Type Marcinkiewicz Integral and Its Commutator on Metric Measure Spaces [J]. Acta mathematica scientia,Series A, 2020, 40(6): 1431-1445. |
[2] | Chen Dongxiang, Chen Xuemei. Lp Boundedness for Some Commutators Related to Schrödinger Operator [J]. Acta mathematica scientia,Series A, 2016, 36(5): 832-847. |
[3] | Chen Dongxiang, Zhou Wenjuan, Fang Yuda. The Boundedness of the Commutator of Riesz Potential Associated with Schrödinger Operators [J]. Acta mathematica scientia,Series A, 2016, 36(1): 117-129. |
[4] | Wang Songbai, Pan Jibing, Jiang Yinsheng. Necessary and Sufficient Conditions for Boundedness of Commutators of Multilinear Fractional Integral Operators [J]. Acta mathematica scientia,Series A, 2015, 35(6): 1106-1114. |
[5] | Zheng Qingyu, Zhang Lei, Shi Shaoguang. On Boundedness of Sublinear Operators on Generalized Weighted Grand Morrey Spaces [J]. Acta mathematica scientia,Series A, 2015, 35(3): 503-514. |
[6] | MO Hui-Xia, LU Shan-Zhen. Boundedness of Generalized Higher Order Commutators of Marcinkiewicz |Integrals with Variable Kernels on Herz-type Hardy Spaces [J]. Acta mathematica scientia,Series A, 2015, 35(1): 56-67. |
[7] | WANG Hua. Lipschtz Estimates for Multilinear Commutator of Marcinkiewicz Operator [J]. Acta mathematica scientia,Series A, 2014, 34(4): 977-991. |
[8] | LU Sheng-Dong, JIANG Yin-Sheng, WANG Song-Bai. Weighted Estimates for Commutators of Marcinkiewicz Integrals with Non-Doubling Measures [J]. Acta mathematica scientia,Series A, 2014, 34(2): 303-316. |
[9] | SUN Ai-Wen, WANG Yong-Yan, SHU Li-Sheng. Boundedness of Multilinear Commutators Generated by Singular Integral Operators with Non-Smooth Kernel on Spaces of Homogeneous Type [J]. Acta mathematica scientia,Series A, 2014, 34(2): 347-357. |
[10] | WANG Li-Wei, QU Meng, SHU Li-Sheng. CBMO Estimates for Higher-Order Commutators onHomogeneous Morrey-Herz Spaces [J]. Acta mathematica scientia,Series A, 2014, 34(2): 426-436. |
[11] | LIAN Jia-Li, MA Bo-Lin, WU Huo-Xiong. On the Commutators of Multilinear Fractional Integrals with Weighted Lipschitz Functions [J]. Acta mathematica scientia,Series A, 2013, 33(3): 494-509. |
[12] | KONG Xiang-Bo, JIANG Yin-Sheng, ZHANG Lin. The Boundedness of Commutators with the Weighted Lipschitz Functions [J]. Acta mathematica scientia,Series A, 2013, 33(1): 152-164. |
[13] | WANG Hong-Bin, FU Zun-Wei, LIU Zong-Guang. Higher-order Commutators of Marcinkiewicz Integrals on Variable Lebesgue Spaces [J]. Acta mathematica scientia,Series A, 2012, 32(6): 1092-1101. |
[14] | ZHANG Pu, WU Jiang-Long, LIU Qiang-Guo. Weighted Endpoint Estimates for Multilinear Commutators of Marcinkiewicz Integrals [J]. Acta mathematica scientia,Series A, 2012, 32(5): 892-903. |
[15] | QIAO Dan, YANG Mei-Jin, CHEN Jian-Ren. Endpoint Estimates for Higher Order Maximal Commutators [J]. Acta mathematica scientia,Series A, 2012, 32(2): 320-335. |
|