Acta mathematica scientia,Series A ›› 2020, Vol. 40 ›› Issue (5): 1235-1247.
Previous Articles Next Articles
Received:
2019-10-15
Online:
2020-10-26
Published:
2020-11-04
Contact:
Gao Jia
E-mail:745136863@qq.com;gaojia89@163.com
Supported by:
CLC Number:
Mingmin Wang,Gao Jia. Bifurcation of Positive Solutions for Quasilinear Elliptic Equations with Φ-Laplacian Operator and Concave-Convex Nonlinearities[J].Acta mathematica scientia,Series A, 2020, 40(5): 1235-1247.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
1 | Rao M N , Ren Z D . Theory of Orlicz Spaces. New York: Marcel Dekker, 1991 |
2 |
Fukagai N , Ito M , Narukawa K . Positive solutions of quasilinear elliptic equations with critical Orlicz-Sobolev nonlinearity on ${\Bbb {R^{N}}}$. Funkc Ekvacioj, 2006, 49 (2): 235- 267
doi: 10.1619/fesi.49.235 |
3 |
Huentutripay J , Manasevich R . Nonlinear eigenvalues for a quasilinear elliptic system in Orlicz-Sobolev spaces. J Dyn Differ Equ, 2006, 18 (4): 901- 929
doi: 10.1007/s10884-006-9049-7 |
4 | Li X W , Jia G . Multiplicity of solutions for quasilinear elliptic problems involving Φ-Laplacian operator and critical growth. Electronic J Qual Theo, 2019, (6): 1- 15 |
5 |
Azorero J G , Manfredi J , Alonso I P . Sobolev versus Hölder local minimizers and global multiplicity for some quasilinear elliptic equations. Commun Contemp Math, 2000, 2 (3): 385- 404
doi: 10.1142/S0219199700000190 |
6 | Marano S A , Marino G , Papageorgiou N S . On a Dirichlet problem with (p, q)-Laplacian and parametric concave-convex nonlinearity. J Math Anal Appl, 2019, 475 (2): 1093- 1107 |
7 | Marano S A , Papageorgiou N S . Positive solutions to a Dirichlet problem with p-Laplacian and concave-convex nonlinearity depending on a parameter. Commun Pur Appl Anal, 2013, 12 (2): 815- 829 |
8 |
Papageorgiou N S , Radulescu V D , Repovs D . Robin problems with indefinite linear part and competition phenomena. Commun Pur Appl Anal, 2017, 16 (4): 1293- 1314
doi: 10.3934/cpaa.2017063 |
9 | Gossez J P . Orlicz-Sobolev Spaces and Nonlinear Elliptic Boundary Value Problems. Leipzig: Teubner, 1979, 59- 94 |
10 |
Philippe C , Pagter B D , Sweers G . Existence of solutions to a semilinear elliptic system through Orlicz-Sobolev spaces. Mediterr J Math, 2004, 1 (3): 241- 267
doi: 10.1007/s00009-004-0014-6 |
11 | Tan Z , Fang F . Orlicz-Sobolev vs Hölder local minimizer and multiplicity results for quasilinear elliptic equations. J Math Anal Appl, 2013, 402 (1): 348- 370 |
12 | Carvalho M L , Goncalves V , Silva E D . On quasilinear elliptic problems without the Ambrosetti-Rabinowitz condition. J Math Anal Appl, 2015, 426 (1): 466- 483 |
13 | Ladyzhenskaya O A , Ural'tseva N N . Linear and Quasilinear Elliptic Equations. New York: Academic Press, 1968 |
14 | Lieberman G . The natural generalization of the natural conditions of Ladyshenskaya and Ural'tseva for elliptic equations. Commun Part Diff Eq, 1991, 16 (2/3): 311- 361 |
15 | Pucci P , Serrin J . The Maximum Principle. Basel: Birkhäuser, 2007 |
16 |
Bobkov V , Tanaka M . On positive solutions for (p, q)-Laplace equations with two parameters. Calc Var Partial Diff, 2015, 54 (3): 3277- 3301
doi: 10.1007/s00526-015-0903-5 |
17 | Hu S , Papageorgiou N S . Handbook of Multivalued Analysis. Boston: Springer, 1997 |
|