Acta mathematica scientia,Series A ›› 2020, Vol. 40 ›› Issue (5): 1224-1234.
Previous Articles Next Articles
Received:
2019-01-14
Online:
2020-10-26
Published:
2020-11-04
Contact:
Zhenjie Li
E-mail:lizhenjie.1113@sjtu.edu.cn;2107430235@qq.com
Supported by:
CLC Number:
Zhenjie Li,Lei Li. A Symmetry Result for Solutions of the Fractional Laplacian with Convex Nonlinearites[J].Acta mathematica scientia,Series A, 2020, 40(5): 1224-1234.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
1 | Applebaum D . Lévy Processes and Stochastic Calculus. Cambridge: Cambridge University Press, 2009 |
2 | Bouchard J P , Georges A . Anomalous diffusion in disordered media: Statistical mechanics, models and physical applications. Physics Reports, 1990, 195 (4/5): 127- 293 |
3 |
Bartsch T , Weth T , Willem M . Partial symmetry of least energy nodal solutions to some variational problems. J Anal Math, 2005, 96, 1- 18
doi: 10.1007/BF02787822 |
4 |
Caffarelli L , Vasseur L . Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation. Ann Math, 2010, 171, 1903- 1930
doi: 10.4007/annals.2010.171.1903 |
5 |
Chen W , Fang Y , Yang R . Liouville theorems involving the fractional Laplacian on a half space. Advances in Math, 2015, 274, 167- 198
doi: 10.1016/j.aim.2014.12.013 |
6 | Chen W, Fang Y, Yang R. Semilinear equations involving the fractional Laplacian on domains. 2013, arXiv: 1309.7499 |
7 | Constantin P. Euler equations, Navier-Stokes equations and turbulence//Cannone M, Miyakawa T. Mathematical Foundation of Turbulent Viscous Flows. Berlin: Springer, 2006: 1-43 |
8 |
Caffarelli L , Silvestre L . An extension problem related to the fractional Laplacian. Commun PDEs, 2007, 32, 1245- 1260
doi: 10.1080/03605300600987306 |
9 |
Cabré X , Tan J . Positive solutions of nonlinear problems involving the square root of the Laplacian. Advances in Math, 2010, 224, 2052- 2093
doi: 10.1016/j.aim.2010.01.025 |
10 |
Chen W , Zhu J . Indefinite fractional elliptic problem and Liouville theorems. J Diff Equa, 2016, 260, 4758- 4785
doi: 10.1016/j.jde.2015.11.029 |
11 |
Dipierro S , Pinamonti A . A geometric inequality and a symmetry result for elliptic systems involving the fractional Laplacian. J Diff Equa, 2013, 255, 85- 119
doi: 10.1016/j.jde.2013.04.001 |
12 | Mehdi K El , Pacella F . Morse index and blow-up points of solutions of some nonlinear problems. Atti Accad Naz Lincei Mat Appl, 2002, 13, 101- 105 |
13 |
Felmer P , Wang Y . Radial symmetry of positive solutions to equations involving the fractional Laplacian. Comm Cont Math, 2014, 16, 1350023
doi: 10.1142/S0219199713500235 |
14 |
Fall M M , Jarohs S . Overdetermined problems with fractional Laplacian. ESAIM Control Optim Calc Var, 2015, 21, 924- 938
doi: 10.1051/cocv/2014048 |
15 | Franzina G , Palatucci G . Fractional p-eigenvalues. Riv Mat Univ Parma, 2014, 5, 373- 386 |
16 |
Jarohs S , Weth T . Symmetry via antisymmetric maximum principles in nonlocal problems of variable order. Annali di Mat Pura Appl, 2016, 195, 273- 291
doi: 10.1007/s10231-014-0462-y |
17 |
Kwaśnicki M . Eigenvalues of the fractional Laplace operator in the interval. J Func Anal, 2012, 262, 2379- 2402
doi: 10.1016/j.jfa.2011.12.004 |
18 | Landkof N S . Foundations of Modern Potential Theory. New York: Springer-Verlag, 1972 |
19 |
Lindgren E , Lindqvist P . Fractional eigenvalues. Calc Var PDE, 2014, 49, 795- 826
doi: 10.1007/s00526-013-0600-1 |
20 |
Li D , Li Z . Some overdetermined problems for the fractional Laplacian equation on the exterior domain and the annular domain. Nonlinear Analysis: TMA, 2016, 139, 196- 210
doi: 10.1016/j.na.2016.02.019 |
21 |
Nezza E , Palatucci G , Valdinoci E . Hitchhiker's gide to the fractional Sobolev spaces. Bull Sci Math, 2012, 136, 521- 573
doi: 10.1016/j.bulsci.2011.12.004 |
22 |
Oton X R , Serra J . The dirichlet problem for the fractional Laplacian: regularity up to the boundary. J Math Pures Appl, 2014, 101, 275- 302
doi: 10.1016/j.matpur.2013.06.003 |
23 |
Pacella F . Symmetry results for solutions of semilinear elliptic equtions with convex nonlinearities. J Func Anal, 2002, 192, 271- 282
doi: 10.1006/jfan.2001.3901 |
24 |
Poláčik P . On symmetry of nonnegative solutions of elliptic equations. Ann I H Poincaré, 2012, 29, 1- 19
doi: 10.1016/j.anihpc.2011.03.001 |
25 |
Pacella F , Ramaswamy M . Symmetry solutions of elliptic equations via maximum principles. Handbook of Differential Equations: Stationary Partial Differential Equations, 2008, 6, 269- 312
doi: 10.1016/S1874-5733(08)80021-6 |
26 |
Perera K , Squassina M . On symmetry results for elliptic equations with convex nonlinearities. Comm Pure Appl Anal, 2013, 12, 3013- 3026
doi: 10.3934/cpaa.2013.12.3013 |
27 |
Pacella F , Weth T . Symmetry of solutions to semilinear elliptic equations via Morse index. Proc Amer Math Soc, 2007, 135, 1753- 1762
doi: 10.1090/S0002-9939-07-08652-2 |
28 |
Oton X R , Serra J . The Pohozaev identity for the fractional Laplacian. Arch Rational Mech Anal, 2014, 213, 587- 628
doi: 10.1007/s00205-014-0740-2 |
29 |
Silvestre L . Regularity of the obstacle problem for a fractional power of the Laplace operator. Comm Pure Appl Math, 2007, 60, 67- 112
doi: 10.1002/cpa.20153 |
30 |
Smets D , Willem M . Partial symmetry and asymptotic behavior for some elliptic variational problems. Calc Var PDE, 2003, 18, 57- 75
doi: 10.1007/s00526-002-0180-y |
31 |
Zoia A , Rosso A , Kardar M . Fractional Laplacian in bounded domains. Phys Rev E, 2007, 76, 021116
doi: 10.1103/PhysRevE.76.021116 |
[1] | Qiuyue Zhang. Global Regularity for 3D Generalized Oldroyd-B Type Models with Fractional Dissipation [J]. Acta mathematica scientia,Series A, 2019, 39(5): 1125-1135. |
[2] | Zhuhong Zhang. Four-Dimensional Shrinking Gradient Ricci Solitons with Half Positive Isotropy Curvature [J]. Acta mathematica scientia,Series A, 2019, 39(5): 1011-1017. |
[3] | Ruijing Li. A General Maximum Principle for Forward-Backward Stochastic Control Systems of Mean-Field Type [J]. Acta mathematica scientia,Series A, 2019, 39(1): 143-155. |
[4] | Zhang Chunguo, Liu Yubiao, Liu Weiwei. Boundary Optimal Control for the Timoshenko Beam [J]. Acta mathematica scientia,Series A, 2018, 38(3): 454-466. |
[5] | HUANG Qin, RUAN Qi-Hua. Elliptic Boundary Value Problems on Compact Manifolds [J]. Acta mathematica scientia,Series A, 2015, 35(1): 43-49. |
[6] | LI Ben-Niao, CHEN Xiao-Li. Existence of Solutions for Fractional Laplace Equation with Concave-Convex Term [J]. Acta mathematica scientia,Series A, 2014, 34(5): 1228-1235. |
[7] | XU Jin-Ju. A Remark on the Convexity of Hypersurface with Prescribed Curvature Equations [J]. Acta mathematica scientia,Series A, 2011, 31(5): 1176-1180. |
[8] |
Wang Bing;Xu Xuewen.
Cauchy Problem for the Nonhomogeneous Hyperbolic Conservation Laws with the Degenerate Viscous Term [J]. Acta mathematica scientia,Series A, 2008, 28(1): 109-115. |
[9] | LUO Zhi-Hua, WANG Mian-Sen. Optimal Harvesting Control Problem for Linear Periodic Age dependent Population Dynamic System [J]. Acta mathematica scientia,Series A, 2005, 25(6): 905-912. |
[10] | DING Jun-Tang. Maximum |Principles for a Class of Semilinear Parabolic Boundary Value Problems [J]. Acta mathematica scientia,Series A, 2004, 24(1): 63-70. |
|