Acta mathematica scientia,Series A ›› 2020, Vol. 40 ›› Issue (3): 641-649.
Previous Articles Next Articles
Received:
2019-03-22
Online:
2020-06-26
Published:
2020-07-15
Supported by:
CLC Number:
Guodong Ma. A Strongly Convergent Generalized Gradient Projection Method for Minimax Optimization with General Constraints[J].Acta mathematica scientia,Series A, 2020, 40(3): 641-649.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
"
问题 | 算法 | Ni | |||
问题1 | 算法A | ||||
算法JZQM | |||||
算法YG | |||||
问题2 | 算法A | ||||
算法JZQM | |||||
算法YG | |||||
问题3 | 算法A | ||||
算法JZQM | |||||
算法YG | |||||
问题5 | 算法A | ||||
算法JZQM | |||||
问题6 | 算法A | ||||
算法JZQM | |||||
问题7 | 算法A | ||||
算法JZQM |
1 |
Yu Y H , Gao L . Nonmonotone line search algorithm for constrained minimax problems. J Optimiz Theory App, 2002, 115 (2): 419- 446
doi: 10.1023/A:1020896407415 |
2 | Jian J B , Zhang X L , Quan R , Ma Q . Generalized monotone line search SQP algorithm for constrained minimax problems. Optimization, 2009, 58 (1): 101- 131 |
3 |
Jian J B , Hu Q J , Tang C M . Superlinearly convergent norm-relaxed SQP method based on active set identification and new line search for constrained minimax problems. J Optimiz Theory App, 2014, 163 (3): 859- 883
doi: 10.1007/s10957-013-0503-5 |
4 | Wang F S , Wang C L . An adaptive nonmonotone trust region method with curvilinear search for minimax problem. Appl Math Comput, 2013, 219, 8033- 8041 |
5 | Ye F , Liu H W , Zhou S S , et al. A smoothing trust region Newton-CG method for minimax problem. Appl Math Comput, 2008, 199, 581- 589 |
6 | Chi X N , Wei H J , Wan Z P , et al. Smoothing Newton algorithm for the circular cone programming with a nonmonotone line search. Acta Math Sci, 2017, 37B (5): 1262- 1280 |
7 |
Obasanjo E , Tzallas-Regas G , Rustem B . An interior point algorithm for nonlinear minimax problems. J Optimiz Theory App, 2010, 144 (2): 291- 318
doi: 10.1007/s10957-009-9599-z |
8 |
Mayne D Q , Polak E . Feasible directions algorithms for optimization problems with equality and inequality constraints. Math Program, 1976, 11 (1): 67- 80
doi: 10.1007/BF01580371 |
9 | Jian J B , Xu Q J , Han D L . A strongly convergent norm-relaxed method of strongly sub-feasible direction for optimization with nonlinear equality and inequality constraints. Appl Math Comput, 2006, 182, 854- 870 |
10 | Jian J B , Guo C H , Yang L F . A new generalized projection method of strongly sub-feasible directions for general constrained optimization. Pac J Optim, 2009, 5 (3): 507- 523 |
11 | Rosen J B . The gradient projection method for nonlinear programming. Part I. Linear constraints. J Soc Ind Appl Math, 1960, 8 (1): 181- 217 |
12 |
Rosen J B . The gradient projection method for nonlinear programming. Part Ⅱ. Linear constraints. J Soc Ind Appl Math, 1961, 9 (4): 514- 532
doi: 10.1137/0109044 |
13 | 朱志斌, 王硕, 简金宝. 非线性优化一个超线性收敛的广义投影型可行方向法. 应用数学学报, 2014, 37 (1): 179- 192 |
Zhu Z B , Wang S , Jian J B . A generalized projection feasible method with superlinear convergence for nonlinear optimization. Acta Math Appl Sin, 2014, 37 (1): 179- 192 | |
14 | 简金宝. 光滑约束优化快速算法-理论分析与数值试验. 北京: 科学出版社, 2010 |
Jian J B . Fast Algorithms for Smooth Constrained Optimization-Theoretical Analysis and Numerical Experiments. Beijing: Science Press, 2010 | |
15 |
Ma G D , Jian J B . An ε-generalized gradient projection method for nonlinear minimax problems. Nonlinear Dynam, 2014, 75 (4): 693- 700
doi: 10.1007/s11071-013-1095-1 |
16 |
Ma G D , Zhang Y F , Liu M X . A generalized gradient projection method based on a new working set for minimax optimization problems with inequality constraints. J Inequal Appl, 2017, 2017, 51
doi: 10.1186/s13660-017-1321-3 |
|