Acta mathematica scientia,Series A ›› 2020, Vol. 40 ›› Issue (2): 452-459.
Previous Articles Next Articles
Cheng Ouyang1,*(),Weigang Wang2,Jiaqi Mo3
Received:
2017-09-20
Online:
2020-04-26
Published:
2020-05-21
Contact:
Cheng Ouyang
E-mail:oyc@zjhu.edu.cn
Supported by:
CLC Number:
Cheng Ouyang,Weigang Wang,Jiaqi Mo. The Fractional Generalized Disturbed Thermal Wave Equation[J].Acta mathematica scientia,Series A, 2020, 40(2): 452-459.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
1 | Podlubny I. Fractional Differential Equations. London:Academic Press, 1999 |
2 | Mainardi F. Fractional Calculus and Waves in Linear Viscoelasticity:An Introduction to Mathematical Models. London:Imperial College Press, 2010 |
3 |
Rajneesh K , Vandana G . Uniqueness, reciprocity theorem, and plane waves in thermoelastic diffusion with fractional order derivative. Chin Phys B, 2013, 22 (7): 074601
doi: 10.1088/1674-1056/22/7/074601 |
4 | 辛宝贵, 陈通, 刘艳芹. 一类分数阶混沌金融系统的复杂性演化研究. 物理学报, 2011, 60 (4): 048901 |
Xin B G , Chen T , Liu Y Q . Complexity evolvement of a chaotic fractional-orderfinancial system. Acta Phys Sin, 2011, 60 (4): 048901 | |
5 |
蔚涛, 罗懋康, 华云. 分数阶质量涨落谐振子的共振行为. 物理学报, 2013, 62 (21): 210503
doi: 10.7498/aps.62.210503 |
Wei T , Luo M K , Hua Y . The resonant behavior of fractional harmonic oscillator with fluctuating mass. Acta Phys Sin, 2013, 62 (21): 210503
doi: 10.7498/aps.62.210503 |
|
6 |
范文萍, 蒋晓芸. 带有分数阶热流条件的时间分数阶热波方程及其参数估计问题. 物理学报, 2014, 63 (14): 140202
doi: 10.7498/aps.63.140202 |
Fan W P , Jiang X Y . Parameters estimation for a one-dimensional time fractional thermal wave equation with fractional heat flux conditions. Acta Phys Sin, 2014, 63 (14): 140202
doi: 10.7498/aps.63.140202 |
|
7 |
Yu Y J , Wang Z H . A fractional-order phase-locked loop with time-delay and its Hopf bifurcation. Chin Phys Lett, 2013, 30 (11): 110201
doi: 10.1088/0256-307X/30/11/110201 |
8 |
Faye L , Frenod E , Seck D . Singularly perturbed degenerated parabolic equations and application to seabed morphodynamics in tided environment. Discrete Contin Dyn Syst, 2011, 29 (3): 1001- 1030
doi: 10.3934/dcds.2011.29.1001 |
9 |
Samusenko P F . Asymptotic integration of degenerate singularly perturbed systems of parabolic partial differential equations. J Math Sci, 2013, 189 (5): 834- 847
doi: 10.1007/s10958-013-1223-y |
10 |
Ge H X , Cheng R J . A meshless method based on moving Kriging interpolation for a two-dimensional time-fractional diffusion equation. Chin Phys B, 2014, 23 (4): 040203
doi: 10.1088/1674-1056/23/4/040203 |
11 | de Jager E M, Jiang F R. The Theory of Singular Perturbation. Amsterdam:North-Holland Publishing Co, 1996 |
12 | Barbu L, Morosanu G. Singularly Perturbed Boundary-Value Problem. Basel:Birkhauserm Verlag AG, 2007 |
13 |
韩祥临, 汪维刚, 莫嘉琪. 流行性病毒传播生态动力学系统. 数学物理学报, 2019, 39 (1): 200- 208
doi: 10.3969/j.issn.1003-3998.2019.01.019 |
Han X L , Wang W G , Mo J Q . Bionomics dynamic system for epidemic virus transmission. Acta Math Sci, 2019, 39 (1): 200- 208
doi: 10.3969/j.issn.1003-3998.2019.01.019 |
|
14 |
韩祥临, 汪维刚, 莫嘉琪. 一类非线性微分-积分时滞反应扩散系统的广义解. 数学物理学报, 2019, 39 (2): 297- 306
doi: 10.3969/j.issn.1003-3998.2019.02.009 |
Han X L , Wang W G , Mo J Q . Generalized solution to a class of nonlinear differential-integral time delay reaction diffusion system. Acta Math Sci, 2019, 39 (2): 297- 306
doi: 10.3969/j.issn.1003-3998.2019.02.009 |
|
15 | Mo J Q . Singular perturbation for a class of nonlinear reaction diffusion systems. Science in China, 1989, 32 (11): 1306- 1315 |
16 |
Mo J Q . Singularly perturbed reaction diffusion problem for nonlinear boundary condition with two parameters. Chin Phys, 2010, 19 (1): 010203
doi: 10.1088/1674-1056/19/1/010203 |
17 | Mo J Q , Yao J A , Tang R R . Approximate analytic solution of solitary wave for a class of nonlinear disturbed long-wave system. Comm Theor Phys, 2010, 54 (1): 27- 30 |
18 |
Mo J Q , Lin W T . Generalized variation iteration solution of an atmosphere-ocean oscillator model for global climateplexity. J Sys Sci Complexity, 2011, 24 (2): 271- 276
doi: 10.1007/s11424-011-7153-1 |
19 |
Mo J Q , Lin W T , Lin Y H . Asymptotic solution for the Elñino time delay sea-air oscillator model. Chin Phys B, 2011, 20 (7): 070205
doi: 10.1088/1674-1056/20/7/070205 |
20 |
Mo J Q . Homotopiv mapping solving method for gain fluency of a laser pulse amplifier. Science in China Ser G, 2009, 52 (7): 1007- 1010
doi: 10.1007/s11433-009-0146-6 |
21 |
欧阳成, 姚静荪, 石兰芳, 莫嘉琪. 一类尘埃等离子体孤子解. 物理学报, 2014, 63 (11): 110203
doi: 10.7498/aps.63.110203 |
Ouyang C , Yao J S , Shi L F , Mo J Q . Solitary wave solution for a class of dusty plasma. Acta Phys Sin, 2014, 63 (11): 110203
doi: 10.7498/aps.63.110203 |
|
22 | 欧阳成, 陈贤峰, 莫嘉琪. 广义扰动Nizhnik-Novikov-Veselov系统的孤波解的孤波解. 系统科学与数学, 2017, 37 (3): 908- 917 |
Ouyang C , Chen X F , Mo J Q . The solutions to solitary wave for generalized disturbed Nizhnik-Novikov-Vedelov system. J Sys Sci Math, 2017, 37 (3): 908- 917 | |
23 | 欧阳成, 姚静荪, 石兰芳, 莫嘉琪. 一类广义鸭轨迹系统轨线的构造. 物理学报, 2012, 61 (3): 030202 |
Ouyang C , Yao J S , Shi L F , Mo J Q . Constructing path curve for a class of generalized phase tracks of canard system. Acta Phys Sin, 2012, 61 (3): 030202 | |
24 | 欧阳成, 林万涛, 程荣军, 莫嘉琪. 一类厄尔尼诺海-气时滞振子的渐近解. 物理学报, 2013, 62 (6): 060201 |
Ouyang C , Lin W T , Cheng R J , Mo J Q . A class of asymptotic solution of sea-air time delay oscillator for the Elñino-southern oscillation mechanism. Acta Phys Sin, 2013, 62 (6): 060201 | |
25 |
Ouyang C , Cheng L H , Mo J . Solving a class of burning disturbed problem with shock layer. Chin Phy B, 2012, 21 (5): 050203
doi: 10.1088/1674-1056/21/5/050203 |
26 | Wang W G , Shi L F , Han X L , Mo J Q . Singular perturbation problem for reaction diffusion tiime delay equation. Chin J Engineering Math, 2015, 32 (2): 291- 297 |
27 | Wang W G , Shi J R , Shi L F , Mo J Q . The singularly perturbed solution of nonlinear nonlocal equation for higher order. J Nankai Univ, 2014, 47 (1): 13- 18 |
28 |
汪维刚, 林万涛, 石兰芳, 莫嘉琪. 非线性扰动时滞长波系统孤波近似解. 物理学报, 2014, 63 (11): 110204
doi: 10.7498/aps.63.110204 |
Wang W G , Lin W T , Shi L F , Mo J Q . Approximate solution of solitary wave for nonlinear-disturbed time delay long-wave system. Acta Phys Sin, 2014, 63 (11): 110204
doi: 10.7498/aps.63.110204 |
|
29 | 汪维刚, 石兰芳, 韩祥临, 莫嘉琪. 捕食-被捕食微分方程种群模型的研究综述. 武汉大学学报, 2015, 61 (4): 299- 307 |
Wang W G , Shi J R , Han X L , Mo J Q . The research summarizes to population model of prey-predator differential equations. J Wuhan Univ, 2015, 61 (4): 299- 307 | |
30 | Wang W G , Shi L F , Han X L , Mo J Q . Singular perturbation problem for reaction diffusion time delay equation. Chin J Engineering Math, 2015, 32 (2): 291- 297 |
31 | Wang W G , Shi L F , Xu Y H , Mo J Q . Generalized solution of the singularly perturbed boundary value problems for semilinear elliptic equation of higher order with two parameters. J Nankai Univ, 2014, 47 (2): 47- 81 |
32 | Wang W G , Shi J R , Shi L F , Mo J Q . The singularly perturbed solution of nonlinear nonlocal equation for higher order. J Nankai Univ, 2014, 47 (1): 13- 18 |
|