Acta mathematica scientia,Series A ›› 2020, Vol. 40 ›› Issue (2): 328-339.
Previous Articles Next Articles
Yongjun Li1,Yanmiao Sang2,Caidi Zhao2,*()
Received:
2019-03-07
Online:
2020-04-26
Published:
2020-05-21
Contact:
Caidi Zhao
E-mail:zhaocaidi2013@163.com; zhaocaidi@wzu.edu.cn
Supported by:
CLC Number:
Yongjun Li,Yanmiao Sang,Caidi Zhao. Invariant Measures and Liouville Type Equation for First-Order Lattice System[J].Acta mathematica scientia,Series A, 2020, 40(2): 328-339.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
1 | Temam R. Infinite Dimensional Dynamical Systems in Mechanics and Physics. Berlin: Springer, 1997 |
2 |
Feireisl E , Laurencot P , Simondon F . Global attarctor for degenetate parabolic equations unbounded domains. J Differential Equations, 1996, 129, 239- 261
doi: 10.1006/jdeq.1996.0117 |
3 | Li Y , Wei J . Asymptotic dynamics for reaction diffusion equations in unbounded domain. J Appl Anal Comp, 2018, 8, 1186- 1193 |
4 |
Wang B . Attractors for reaction diffusion equations in unbounded domains. Physica D, 1999, 128, 41- 52
doi: 10.1016/S0167-2789(98)00304-2 |
5 |
Li C , Li D , Zhang Z . Dynamic bifurcation from infinity of nonlinear evolution equations. SIAM J Appl Dyn Syst, 2017, 16, 1831- 1868
doi: 10.1137/16M1107358 |
6 |
Bates P W , Lu K , Wang B . Attractors for lattice dynamical systems. Inter J Bifur Choas, 2001, 11 (1): 143- 153
doi: 10.1142/S0218127401002031 |
7 | Chow S N. Lattice Dynamical Systems//Macki J W, Zecca P, et al. Dynamical Systems. Berlin: Springer, 2003: 1-102 |
8 |
Keener J P . Propagation and its failure in coupled systems of discrete excitable cells. SIAM J Appl Math, 1987, 47, 556- 572
doi: 10.1137/0147038 |
9 |
Erneux T , Nicolis G . Propagating waves in discrete bistable reaction diffusion systems. Physica D, 1993, 67, 237- 244
doi: 10.1016/0167-2789(93)90208-I |
10 |
Fabiny L , Colet P , Roy R . Coherence and phase dynamics of spatially coupled solid-state lasers. Phys Rev A, 1993, 47, 4287- 4296
doi: 10.1103/PhysRevA.47.4287 |
11 |
Hillert M . A solid-solution model for inhomogeneous systems. Acta Metall, 1961, 9, 525- 535
doi: 10.1016/0001-6160(61)90155-9 |
12 | Chow S N , Mallet Paret J , Van Vleck E S . Pattern formation and spatial chaos in spatially discrete evolution equations. Rand Comp Dyn, 1996, 4, 109- 178 |
13 |
Wang B . Dynamics of systems on infinite lattices. J Differential Equations, 2006, 221, 224- 245
doi: 10.1016/j.jde.2005.01.003 |
14 |
Zhou S , Shi W . Attractors and dimension of dissipative lattice systems. J Differential Equations, 2006, 224, 172- 204
doi: 10.1016/j.jde.2005.06.024 |
15 |
Wang B . Asymptotic behavior of non-autonomous lattice systems. J Math Anal Appl, 2007, 331, 121- 136
doi: 10.1016/j.jmaa.2006.08.070 |
16 |
Zhao C , Zhou S . Compact kernel sections for nonautonomous Klein-Gordon-Schrödinger equations on infinite lattices. J Math Anal Appl, 2007, 332, 32- 56
doi: 10.1016/j.jmaa.2006.10.002 |
17 |
Zhao X , Zhou S . Kernel sections for processes and nonautonomous lattice systems. Discrete Cont Dyn Syst-B, 2008, 9, 763- 785
doi: 10.3934/dcdsb.2008.9.763 |
18 | Zhou S , Zhao C . Compact uniform attractors for dissipative non-autonomous lattice dynamical systems. Comm Pure Appl Anal, 2007, 21, 1087- 1111 |
19 |
Zhao C , Zhou S . Attractors of retarded first order lattice systems. Nonlinearity, 2007, 20, 1987- 2006
doi: 10.1088/0951-7715/20/8/010 |
20 |
Han X , Shen W , Zhou S . Random attractors for stochastic lattice dynamical systems in weighted spaces. J Differential Equations, 2011, 250, 1235- 1266
doi: 10.1016/j.jde.2010.10.018 |
21 |
Zhao C , Zhou S . Sufficient conditions for the existence of global random attractors for stochastic lattice dynamical systems and applications. J Math Anal Appl, 2009, 354, 78- 95
doi: 10.1016/j.jmaa.2008.12.036 |
22 |
Zhou S . Random exponential attractor for cocycle and application to non-autonomous stochastic lattice systems with multiplicative white noise. J Differential Equations, 2017, 263, 2247- 2279
doi: 10.1016/j.jde.2017.03.044 |
23 |
Abdallah Ahmed Y . Exponential attractors for first-order lattice dynamical systems. J Math Anal Appl, 2008, 339, 217- 224
doi: 10.1016/j.jmaa.2007.06.054 |
24 |
Abdallah Ahmed Y . Uniform exponential attractors for first order non-autonomous lattice dynamical systems. J Differential Equations, 2011, 251, 1489- 1504
doi: 10.1016/j.jde.2011.05.030 |
25 |
赵才地, 周盛凡. 格点系统存在指数吸引子的充分条件及应用. 数学学报, 2010, 53, 233- 242
doi: 10.3969/j.issn.1005-3085.2010.02.006 |
Zhao C , Zhou S . Sufficient conditions for the existence of exponential attractor for lattice system. Acta Math Sinica, 2010, 53, 233- 242
doi: 10.3969/j.issn.1005-3085.2010.02.006 |
|
26 | Zhao C , Xue G , Łukaszewicz G . Pullback attractors and invariant measures for discrete Klein-Gordon-Schrödinger equations. Discrete Cont Dyn Syst-B, 2018, 23, 4021- 4044 |
27 | Foias C , Manley O , Rosa R , Temam R . Navier-Stokes Equations and Turbulence. Cambridge: Cambridge University Press, 2001 |
28 | Wang X . Upper-semicontinuity of stationary statistical properties of dissipative systems. Discrete Cont Dyn Syst, 2009, 23, 521- 540 |
29 |
Lukaszewicz G , Real R , Robinson J C . Invariant measures for dissipative dynamical systems and generalised Banach limits. J Dyn Differential Equations, 2011, 23, 225- 250
doi: 10.1007/s10884-011-9213-6 |
30 |
Chekroun M , Glatt-Holtz N E . Invariant measures for dissipative dynamical systems:Abstract results and applications. Comm Math Phys, 2012, 316, 723- 761
doi: 10.1007/s00220-012-1515-y |
31 |
Lukaszewicz G , Robinson J C . Invariant measures for non-autonomous dissipative dynamical systems. Discrete Cont Dyn Syst, 2014, 34, 4211- 4222
doi: 10.3934/dcds.2014.34.4211 |
32 |
Zhao C , Yang L . Pullback attractor and invariant measure for the globally modified Navier-Stokes equations. Comm Math Sci, 2017, 15, 1565- 1580
doi: 10.4310/CMS.2017.v15.n6.a4 |
33 |
赵才地, 李艳娇, 阳玲, 张明书. Ladyzhenskaya流体力学方程组的拉回吸引子与不变测度. 数学学报, 2018, 61, 823- 834
doi: 10.3969/j.issn.0583-1431.2018.05.012 |
Zhao C , Li Y , Yang L , Zhang M . Pullback attractor and invariant measures for Ladyzhenskaya model. Acta Math Sinica, 2018, 61, 823- 834
doi: 10.3969/j.issn.0583-1431.2018.05.012 |
|
34 |
Zhu Z , Zhao C . Pullback attractor and invariant measures for the three-dimensional regularized MHD equations. Discrete Cont Dyn Syst, 2018, 38, 1461- 1477
doi: 10.3934/dcds.2018060 |
35 | Zhao C , Caraballo T . Asymptotic regularity of trajectory attractor and trajectory statistical solution for the 3D globally modified Navier-Stokes equations. J Differential Equations, 2019, 66, 7205- 7229 |
36 | 郑志刚, 胡岗. 从动力学到统计物理学. 北京: 北京大学出版社, 2016 |
Zheng Z , Hu G . From Dynamics to Statistical Mechanics. Beijing: Beijing University Press, 2016 |
[1] | Zhang Ren, Zhang Shaoyi. The Existence of Invariant Measure for Markov Chains with Uniform Countable Additivity [J]. Acta mathematica scientia,Series A, 2018, 38(2): 350-357. |
[2] | Wang Yonghai, Qin Yuming. Upper Semicontinuity of Pullback Attractors for Nonclassical Diffusion Equations in H01(Ω) [J]. Acta mathematica scientia,Series A, 2016, 36(5): 946-957. |
[3] | Yang Xinguang, Zhao Mingxia, Hou Wei. Upper Semi-Continuity of Pullback Attractors for the 2D Non-Autonomous Navier-Stokes Equations with Weak Damping [J]. Acta mathematica scientia,Series A, 2016, 36(4): 722-739. |
[4] | YANG Xin-Bo, ZHAO Cai-De, JIA Xiao-Lin. The Uniform Attractor and Entropy of the Autonomous Coupled Nonlinear SchrÖdinger Equations on Infinite Lattices [J]. Acta mathematica scientia,Series A, 2013, 33(4): 636-645. |
[5] | WANG Xiao-Hu, LI Shu-Yong. Pullback Attractors for Non-autonomous 2D Navier-Stokes Equations with Linear Dampness in Some Unbounded Domains [J]. Acta mathematica scientia,Series A, 2009, 29(4): 873-881. |
[6] | MA Dong-Kuai, XU Zhi-Ting. Some Generalizations of a Classical Ergodic Property for IFS [J]. Acta mathematica scientia,Series A, 2005, 25(4): 503-508. |
[7] | Wu Qun-Ying. &mu|Invariant Measures for Q Processes——Containing an Absorbing State Case [J]. Acta mathematica scientia,Series A, 2004, 24(1): 16-25. |
|