A Revisit on Multiple-Pulse Homoclinic Solutions in a Generalized Gierer-Meinhardt Equation
Kun Zhu1,Jianhe Shen1,2,*()
1 College of Mathematics and Informatics, Fujian Normal University, Fuzhou 350117 2 Fujian Key Laboratory of Mathematical Analysis and Applications, Fujian Normal University, Fuzhou 350117
Kun Zhu,Jianhe Shen. A Revisit on Multiple-Pulse Homoclinic Solutions in a Generalized Gierer-Meinhardt Equation[J].Acta mathematica scientia,Series A, 2019, 39(6): 1365-1375.
Doelman A , Gardner R A , Kaper T J . Large stable pulse solutions in reaction-diffusion equations. Indiana Univ Math J, 2001, 50: 443- 507
doi: 10.1512/iumj.2001.50.1873
2
Nec Y . Dynamics of pulse solutions in Gierer-Meinhardt model with time dependent diffusivity. J Math Anal Appl, 2018, 457 (1): 585- 615
doi: 10.1016/j.jmaa.2017.08.027
3
Wei J , Winter M . Stable spike clusters for the one-dimensional Gierer-Meinhardt system. European J Appl Math, 2017, 28 (4): 576- 635
doi: 10.1017/S0956792516000450
4
Veerman F , Doelman A . Pulses in a Gierer-Meinhardt equation with a slow nonlinearity. SIAM J Appl Dyn Syst, 2013, 12 (1): 28- 60
doi: 10.1137/120878574
5
Moyles I R , Ward M . Existence, stability, and dynamics of ring and near-ring solutions to the saturated Gierer-Meinhardt model in the semistrong regime. SIAM J Appl Dyn Syst, 2017, 16 (1): 597- 639
doi: 10.1137/16M1060327
6
Doelman A , Kaper T J , Promislow K . Nonlinear asymptotic stability of the semistrong pulse dynamics in a regularized Gierer-Meinhardt model. SIAM J Math Anal, 2007, 38 (6): 1760- 1787
doi: 10.1137/050646883
7
Fenichel N . Geometric singular perturbation theory for ordinary differential equations. J Differential Equations, 1979, 31 (1): 53- 98
doi: 10.1016/0022-0396(79)90152-9
8
Jones C. Geometric Singular Perturbation Theory//Johnson R. Dynamical Systems, Montecatibi Terme, Lecture Notes in Mathematics Volume 1609. Berlin: Springer-Verlag, 1994