Acta mathematica scientia,Series A ›› 2019, Vol. 39 ›› Issue (5): 1228-1246.
Previous Articles Next Articles
Received:
2018-10-23
Online:
2019-10-26
Published:
2019-11-08
Contact:
Yinghui Tang
E-mail:tangyh@sicnu.edu.cn
Supported by:
CLC Number:
Le Luo,Yinghui Tang. System Capacity Optimization Design and Optimal Control Policy (N*, D*) for M/G/1 Queue with p-Entering Discipline and Min(N, D, V)-Policy[J].Acta mathematica scientia,Series A, 2019, 39(5): 1228-1246.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
"
0.262226 | 0.234005 | 0.173473 | 0.116078 | 0.073218 | 0.044167 | 0.025562 | 0.014185 | 0.007539 | 0.003839 | 0.001522 | 0.000609 | 0.000243 | 0.000097 | 0.000039 | 0.000016 | 0.000006 | 0.000002 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 1.917604 |
"
DN | ||||||
1 | 13.144737 | 9.991536 | 9.563765 | 9.521530 | 9.523348 | 9.525169 |
2 | 13.144737 | 9.312163 | 8.666641 | 8.606744 | 8.641893 | 8.668439 |
3 | 13.144737 | 9.098830 | 8.356363 | 8.300900 | 8.391288 | 8.474396 |
4 | 13.144737 | 9.024516 | 8.235207 | 8.184978 | 8.325796 | 8.476696 |
5 | 13.144737 | 8.997709 | 8.185816 | 8.138259 | 8.315510 | 8.527172 |
6 | 13.144737 | 8.987918 | 8.165466 | 8.118911 | 8.319459 | 8.577624 |
7 | 13.144737 | 8.984325 | 8.157101 | 8.110828 | 8.325154 | 8.615477 |
8 | 13.144737 | 8.983005 | 8.153686 | 8.107553 | 8.329470 | 8.640445 |
9 | 13.144737 | 8.982519 | 8.152304 | 8.106051 | 8.332170 | 8.655647 |
10 | 13.144737 | 8.982304 | 8.151748 | 8.105571 | 8.333699 | 8.664381 |
11 | 13.144737 | 8.982275 | 8.151526 | 8.105234 | 8.334510 | 8.669176 |
12 | 13.144737 | 8.982251 | 8.151438 | 8.105137 | 8.334921 | 8.671714 |
13 | 13.144737 | 8.982242 | 8.151404 | 8.105097 | 8.335123 | 8.673016 |
14 | 13.144737 | 8.982239 | 8.151390 | 8.105082 | 8.335298 | 8.673667 |
15 | 13.144737 | 8.982237 | 8.151385 | 8.105075 | 8.335265 | 8.673985 |
16 | 13.144737 | 8.982237 | 8.151383 | 8.105073 | 8.335285 | 8.674137 |
17 | 13.144737 | 8.982237 | 8.151382 | 8.105072 | 8.335294 | 8.674209 |
17.3 | 13.144737 | 8.982237 | 8.151382 | 8.105072 | 8.335296 | 8.674222 |
17.4 | 13.144737 | 8.982237 | 8.151382 | 8.335296 | 8.674226 | |
17.5 | 13.144737 | 8.982237 | 8.151382 | 8.105071 | 8.335297 | 8.674229 |
18 | 13.144737 | 8.982237 | 8.151382 | 8.105071 | 8.335298 | 8.674243 |
19 | 13.144737 | 8.982237 | 8.151381 | 8.105071 | 8.335300 | 8.674258 |
20 | 13.144737 | 8.982237 | 8.151381 | 8.105071 | 8.335301 | 8.674265 |
1 |
Yadin M , Naor P . Queueing system with a removable service station. Operation Research Quarterly, 1963, 14 (4): 393- 405
doi: 10.1057/jors.1963.63 |
2 | Balachandran K . Control policies for a single server system. Management Science, 1973, 19 (4): 1013- 1018 |
3 |
Heyman D P . $T$-policy for the $M/G/1$ queue. Management Science, 1977, 23 (7): 775- 778
doi: 10.1287/mnsc.23.7.775 |
4 |
Doshi B . Queueing systems with vacations-A survey. Queueing Systems, 1986, 1: 29- 66
doi: 10.1007/BF01149327 |
5 |
Ke J C . Modified $T$ vacation policy for an $M/G/1$ queueing system with an unreliable server and startup. Mathematical and Computer Modeling, 2005, 41: 1267- 1277
doi: 10.1016/j.mcm.2004.08.009 |
6 |
Lee H W , Beak J W , Jeon J . Analysis of the $M^X/G/1$ queue under $D$-policy. Stochastic Analysis and Applications, 2005, 23 (4): 785- 808
doi: 10.1081/SAP-200064479 |
7 |
Wang K H , Kuo C C , Ke J C . Optical control of the $D$-policy $M/G/1$ queueing system with server breakdowns. American Journal of Applied Science, 2008, 5 (5): 565- 573
doi: 10.3844/ajassp.2008.565.573 |
8 |
Lan S J , Tang Y H . Analysis of $D$-policy discrete-time $Geo/G/1$ queue with second J-optional service and unreliable server. RAIRO-Operations Research, 2017, 51 (1): 101- 122
doi: 10.1051/ro/2016006 |
9 | Tang Y H , Tang X W . The queue-length distribution for $M^X/G/1$ queue with single server vacation. Acta Mathematica Scientia, 2000, 20B (3): 397- 408 |
10 |
骆川义, 唐应辉, 刘仁彬. 多级适应性休假$M^X/G/1$排队系统的队长分布. 系统科学与数学, 2007, 27 (6): 899- 907
doi: 10.3969/j.issn.1000-0577.2007.06.011 |
Luo C Y , Tang Y H , Liu R B . The queue length distribution of $M^X/G/1$ with adartive mulitistage vacation. Journal of Systems Science & Mathematical Sciences, 2007, 27 (6): 899- 907
doi: 10.3969/j.issn.1000-0577.2007.06.011 |
|
11 |
Tang Y H . The departure process of the $M/G/1$ queueing model with server vacation and exhaustive service discipline. J of Applied Probability, 1994, 31 (4): 1070- 1082
doi: 10.2307/3215330 |
12 | Tang Y H , Yun X , Huang S J . Discrete-time queue with unreliable server and multiple adaptive delayed vacation. J of Computational and Applied Mathematics, 2008, 220 (3): 439- 455 |
13 |
Yu M M , Tang Y H , Fu Y H , Pan L M . $GI/Geom/1/MWV$ queue with changeover time and searching for the optimum service rate in working vacation period. J of Computational and Applied Mathematics, 2011, 235 (8): 2170- 2184
doi: 10.1016/j.cam.2010.10.013 |
14 |
Luo C Y , Tang Y H . The recursive solution for $Geom/G/1(E, SV)$ queue with feedback and single server vacation. Acta Mathematicae Applicatae Sinica, 2011, 27 (1): 155- 166
doi: 10.1007/s10255-011-0049-y |
15 |
Luo C Y , Tang Y H , Chao B S , Xiang K L . Performance analysis of a discrete-time $Geo/G/1$ queue with randomized vacations and at most J vacations. Applied Mathematics Modelling, 2013, 37 (9): 6489- 6504
doi: 10.1016/j.apm.2013.01.033 |
16 | Lan S J , Tang Y H , Yu M M . System capacity optimization design and optimal threshold $N^*$ for a $Geo/G/1$ discrete-time queue with single server vacation and under the control of ${\rm Min}(N, V)$-policy. Journal of Industrial & Management Optimization, 2016, 12 (4): 1435- 1464 |
17 |
Gu J X , Wei Y Y , Tang Y H , Yu M M . Queue size distribution of $Geo/G/1$ queue under the ${\rm Min}(N, D)$-policy. J of Systems Science and Complexity, 2016, 29 (3): 752- 771
doi: 10.1007/s11424-016-4180-y |
18 |
井彩霞, 崔颖, 田乃硕. ${\rm Min}(N, V)$ -策略休假的$M/G/1$排队系统分析. 运筹与管理, 2006, 15 (3): 53- 58
doi: 10.3969/j.issn.1007-3221.2006.03.011 |
Jing C X , Cui Y , Tian N S . Analysis of the $M/G/1$ queueing system with ${\rm Min}(N, V)$-policy. Operations Research & Management Science, 2006, 15 (3): 53- 58
doi: 10.3969/j.issn.1007-3221.2006.03.011 |
|
19 | 唐应辉, 吴文青, 刘云颇, 刘晓云. 基于多重休假的${\rm Min}(N, V)$ -策略$M/G/1$排队系统的队长分布. 系统工程理论与实践, 2014, 34 (6): 1533- 1546 |
Tang Y H , Wu W Q , Liu Y P , Liu X Y . The queue length distribution of $M/G/1$ queueing system with ${\rm Min}(N, V)$-policy based on multiple server vacations. Systems Engineering-Theory & Practice, 2014, 34 (6): 1533- 1546 | |
20 | 唐应辉, 吴文青, 刘云颇. 基于单重休假的${\rm Min}(N, V)$ -策略$M/G/1$排队系统分析. 应用数学学报, 2014, 37 (6): 976- 996 |
Tang Y H , Wu W Q , Liu Y P . Analysis of $M/G/1$ queueing system with ${\rm Min}(N, V)$-policy based on single server vacation. Acta Mathematicae Applicatae Sinica, 2014, 37 (6): 976- 996 | |
21 | 蒋书丽, 唐应辉. 具有多级适应性休假和${\rm Min}(N, V)$ -策略控制的$M/G/1$排队系统. 系统科学与数学, 2017, 37 (8): 1866- 1884 |
Jiang S L , Tang Y H . $M/G/1$ queueing system with multiple adaptive vacations and ${\rm Min}(N, V)$-policy. Journal of Systems Science & Mathematical Sciences, 2017, 37 (8): 1866- 1884 | |
22 | 高丽君, 唐应辉. 具有${\rm Min}(N, D)$ -策略控制的$M/G/1$可修排队系统及最优控制策略. 数学物理学报, 2017, 37A (2): 352- 365 |
Gao L J , Tang Y H . $M/G/1$ repairable queueing system and optimal control policy with ${\rm Min}(N, D)$-policy. Acta Mathematica Scientia, 2017, 37A (2): 352- 365 | |
23 | 蔡晓丽, 唐应辉. 具有温储备失效特征和单重休假${\rm Min}(N, V)$ -控制策略的$M/G/1$可修排队系统. 应用数学学报, 2017, 40 (5): 702- 726 |
Cai X L , Tang Y H . $M/G/1$ repairable queueing system with warm standby failure and ${\rm Min}(N, V)$-policy based on single vacation. Acta Mathematicae Applicatae Sinica, 2017, 40 (5): 702- 726 | |
24 |
Lee H W , Seo W J . The performance of the $M/G/1$ queue under the dyadic ${\rm Min}(N, D)$-policy and its cost optimization. Performance Evaluation, 2008, 65 (10): 742- 758
doi: 10.1016/j.peva.2008.04.006 |
25 |
Lee H W , Seo W J , Lee S W , Jeon J . Analysis of the $MAP/G/1$ queue under the ${\rm Min}(N, D)$-policy. Stochastic Models, 2010, 26 (1): 98- 123
doi: 10.1080/15326340903517121 |
26 | 魏瑛源, 唐应辉, 等. 基于${\rm Min}(N, D)$ -策略的$M/G/1$排队系统的队长分布及最优策略. 系统科学与数学, 2015, 35 (6): 729- 744 |
Wei Y Y , Tang Y H , et al. Queue length distribution and optimum policy for $M/G/1$ Queueing system under ${\rm Min}(N, D)$-policy. Journal of Systems Science & Mathematical Sciences, 2015, 35 (6): 729- 744 | |
27 | 罗乐, 唐应辉. 具有${\rm Min}(N, D, V)$ -策略控制的$M/G/1$排队系统. 运筹学学报, 2019, 23 (2): 1- 16 |
Luo L , Tang Y H . $M/G/1$ queueing system with ${\rm Min}(N, D, V)$-policy control. Journal of Operations Research, 2019, 23 (2): 1- 16 | |
28 | 王敏, 唐应辉. 基于${\rm Min}(N, D, V)$ -策略和单重休假的$M/G/1$排队系统的最优控制策略. 系统科学与数学, 2018, 38 (9): 1067- 1084 |
Wang M , Tang Y H . Optimal control policy of $M/G/1$ queueing system based on ${\rm Min}(N, D, V)$-policy and single server vacation. Journal of Systems Science & Mathematical Sciences, 2018, 38 (9): 1067- 1084 | |
29 | 唐应辉, 毛勇. 服务员假期中以概率$p$进入的$M/G/1$排队系统的随机分解. 数学物理学报, 2004, 24 (6): 683- 688 |
Tang Y H , Mao Y . The stochastic decomposition for $M/G/1$ queue with $ p$-entering discipline during server vacations. Acta Mathematica Scientia, 2004, 24 (6): 683- 688 | |
30 | 骆川义, 唐应辉. 假期中以概率$p$进入的单重休假$M/G/1$排队. 应用数学, 2006, 19 (2): 246- 251 |
Luo C Y , Tang Y H . The $M/G/1$ queue with $p$-entering discipline during single server vacation. Mathematic Application, 2006, 19 (2): 246- 251 | |
31 | 李才良, 唐应辉, 牟永聪, 等. 在第二类故障期间以概率$p$进入的$M/G/1$可修排队系统. 数学物理学报, 2012, 32A (6): 1149- 1157 |
Li C L , Tang Y H , Mu Y C , et al. $M/G/1$ repairable queueing system with $p$-entering discipline during second type failure times. Acta Mathematica Scientia, 2012, 32A (6): 1149- 1157 | |
32 | 刘云颇, 唐应辉. 多重假期中以概率$p$进入的$M/G/1$可修排队系统. 系统工程学报, 2011, 26 (5): 718- 724 |
Liu Y P , Tang Y H . $M/G/1$ repairable queueing system with $p$-entering discipline during server vacation. Journal of Systems Engineering, 2011, 26 (5): 718- 724 | |
33 | 骆川义, 唐应辉. 具有可变到达率的多重休假$Geo^{\lambda_1, \lambda_2}/G/1$排队分析. 数学学报, 2010, 53 (4): 805- 816 |
Luo C Y , Tang Y H . Analysis of a multi-vacation $Geo^{\lambda_1, \lambda_2}/G/1$ queue with variable arrival rate. Acta Mathematic Sinica, 2010, 53 (4): 805- 816 | |
34 |
Luo C Y , Xiang K L , Yu M M , Tang Y H . Recursive solution of queue length distribution for $Geo/G/1$ queue with single server vacation and variable input rate. Computers and Mathematics with Applications, 2011, 61 (9): 2401- 2411
doi: 10.1016/j.camwa.2011.02.018 |
35 | Wei Y Y , Yu M M , Tang Y Y , Gu J X . Queue size distribution and capacity optimum design for $N$-policy $Geo^{\lambda_1, \lambda_2, \lambda_3}/G/1$ queue with setup time and variable input rate. Mathematical and Computer Modelling, 2013, 57 (5/6): 1559- 1571 |
36 | Luo C Y , Tang Y H , Yu K Z , Ding C . Optimal $(r, N)$ -policy for discrete-time $Geo/G/1$ queue with different input rate and setup time. Applied Stochastic Models in Business & Industry, 2015, 31 (4): 405- 423 |
37 | Lan S J , Tang Y H . Analysis of a discrete-time $Geo^{\lambda_1, \lambda_2}/G/1$ queue with $N$-policy and $D$-policy. Journal of Applied Mathematics and Computing, 2017, 53 (1/2): 657- 681 |
38 | 唐应辉, 唐小我. 排队论-基础与分析技术. 北京: 科学出版社, 2006 |
Tang Y H , Tang X W . Queueing Theory-Foundations and Analysis Techniques. Beijing: Science Press, 2006 |
[1] | Quyu Pan,Yinghui Tang. Analysis of M/G/1 Repairable Queueing System and Optimal Control Policy with a Replaceable Repair Facility Under Delay Min(N, D)-Policy [J]. Acta mathematica scientia,Series A, 2018, 38(5): 1014-1031. |
[2] | Gao Lijun, Tang Yinghui. M/G/1 Repairable Queueing System and Optimal Control Policy with Min(N,D)-Policy [J]. Acta mathematica scientia,Series A, 2017, 37(2): 352-365. |
|