Acta mathematica scientia,Series A ›› 2019, Vol. 39 ›› Issue (5): 1102-1114.
Previous Articles Next Articles
Received:
2018-11-14
Online:
2019-10-26
Published:
2019-11-08
Contact:
Jie Wu
E-mail:dxtxwj@126.com
Supported by:
CLC Number:
Jie Wu,Hongxia Lin. The Global Solution and Asymptotic Behavior of Parabolic-Parabolic Keller-Segel Type Model[J].Acta mathematica scientia,Series A, 2019, 39(5): 1102-1114.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
1 | Barbǎlat I . Systèmes d'équations differentielles d'oscillations non linéaires. Rev Math Pures Appl, 1959, 4: 267- 270 |
2 |
Coll J C , et al. Chemical aspects of mass spawning in corals. Ⅱ. Epi-thunbergol, the sperm attractant in the eggs of the soft coral Lobophytum crassum (Cnidaria:Octocorallia). Mar Biol, 1995, 123 (1): 137- 143
doi: 10.1007/BF00350332 |
3 |
Duan R , Li X , Xiang Z . Global existence and large time behavior for a two-dimensional chemotaxis-NavierStokes system. J Differential Equations, 2017, 263: 6284- 6316
doi: 10.1016/j.jde.2017.07.015 |
4 |
Espejo E , Suzuki T . Reaction enhancement by chemotaxis. Nonlinear Anal RWA, 2017, 35: 102- 131
doi: 10.1016/j.nonrwa.2016.10.010 |
5 |
Espejo E , Suzuki T . Reaction terms avoiding aggregation in slow fluids. Nonlinear Anal RWA, 2015, 21: 110- 126
doi: 10.1016/j.nonrwa.2014.07.001 |
6 | Henry D . Geometric Theory of Semilinear Parabolic Equations. Berlin: Springer-Verlag, 1981 |
7 |
Horstmann D , Winkler M . Boundedness vs. blow-up in a chemotaxis system. J Differential Equations, 2005, 215: 52- 107
doi: 10.1016/j.jde.2004.10.022 |
8 |
Keller E F , Segel L A . Model for chemotaxis. J Theoret Biol, 1971, 30: 225- 234
doi: 10.1016/0022-5193(71)90050-6 |
9 |
Keller E F , Segel L A . Travelling bands of chemotactic bacteria:a theoretical analysis. J Theoret Biol, 1971, 30: 235- 248
doi: 10.1016/0022-5193(71)90051-8 |
10 |
Kiselev A , Ryzhik L . Biomixing by chemotaxis and enhancement of biological reactions. Comm Partial Differential Equations, 2012, 37: 298- 312
doi: 10.1080/03605302.2011.589879 |
11 |
Li X , Wang Y , Xiang Z . Global existence and boundedness in a 2D Keller-Segel-Stokes system with nonlinear diffusion and rotational flux. Commun Math Sci, 2016, 14: 1889- 1910
doi: 10.4310/CMS.2016.v14.n7.a5 |
12 |
Li X , Xiao Y . Global existence and boundedness in a 2D Keller-Segel-Stokes system. Nonlinear Anal RWA, 2017, 35: 102- 131
doi: 10.1016/j.nonrwa.2016.10.010 |
13 |
Miller R L . Demonstration of sperm chemotaxis in echinodermata:asteroidea, holothuroidea, ophiuroidea. J Exp Zool, 1985, 234: 383- 414
doi: 10.1002/jez.1402340308 |
14 |
Tao Y , Winkler M . Boundedness and decay enforced by quadratic degradation in a three-dimensional chemotaxis-fluid system. Z Angew Math Phys, 2015, 66: 2555- 2573
doi: 10.1007/s00033-015-0541-y |
15 |
Wang Y , Winkler M , Xiang Z . The small-convection limit in a two-dimensional chemotaxis-Navier-Stokes system. Math Z, 2018, 289: 71- 108
doi: 10.1007/s00209-017-1944-6 |
16 |
Wang Y , Xiang Z . Global existence and boundedness in a Keller-Segel-Stokes system involving a tensorvalued sensitivity with satuation. J Differential Equations, 2015, 259 (12): 7578- 7609
doi: 10.1016/j.jde.2015.08.027 |
17 |
Winkler M . Aggregation vs global diffusive behavior in the higher-dimensional Keller-Segel model. J Differential Equations, 2010, 248 (12): 2889- 2905
doi: 10.1016/j.jde.2010.02.008 |
18 |
Winkler M . Global weak solutions in a three-dimensional chemotaxis-Navier-Stokes system. Ann Inst H Poincare (C) Non Linear Anal, 2016, 33 (5): 1329- 1352
doi: 10.1016/j.anihpc.2015.05.002 |
19 |
Wu J , Wu C . A note on the global existence of a two-dimensional chemotaxis-Navier-Stokes system. Applicable Analysis, 2019, 98: 1224- 1235
doi: 10.1080/00036811.2017.1419199 |
20 |
Wu X , Ding X , Lu T , Wang J . Topological dynamics of Zadeh's extension on upper semi-continuous fuzzy sets. Int J Bifurcation and Chaos, 2017, 27: 1750165
doi: 10.1142/S0218127417501656 |
21 |
Wu X , Ma X , Zhu Z , Lu T . Topological ergodic shadowing and chaos on uniform spaces. Int J Bifurcation and Chaos, 2018, 28: 1850043
doi: 10.1142/S0218127418500438 |
[1] | Penghong Zhong,Ganshan Yang,Xuan Ma. Global Existence and Self-Similar Blowup of Landau-Lifshitz-Gilbert Equation on Hyperbolic Space [J]. Acta mathematica scientia,Series A, 2019, 39(3): 461-474. |
[2] | Zhang Mingshu, Zhu Zheqi, Zhao Caidi. Determining Modes and Determining Nodes to the Fluid Flow of Ladyzhenskaya Model [J]. Acta mathematica scientia,Series A, 2018, 38(1): 71-82. |
[3] | Wang Shenghua, Cheng Guofei. The Asymptotic Behavior of the Solution in Structured Bacterial Population Model [J]. Acta mathematica scientia,Series A, 2018, 38(1): 156-167. |
[4] | Meng Xiaoying. Analysis of a Stochastic Delayed Epidemic Model with a Non-Monotonic Incidence Rate [J]. Acta mathematica scientia,Series A, 2017, 37(6): 1162-1175. |
[5] | Su Xiao, Wang Shubin. Finite Time Blow-Up for the Damped Semilinear Wave Equations with Arbitrary Positive Initial Energy [J]. Acta mathematica scientia,Series A, 2017, 37(6): 1085-1093. |
[6] | Zhang Liang, Yang Guopeng. Null Controllability of a Nonlinear Keller-Segel Equation [J]. Acta mathematica scientia,Series A, 2017, 37(5): 834-845. |
[7] | Duan Shuangshuang, Huang Shoujun. Blow up of Periodic Solutions for a Class of Keller-Segel Equations Arising in Biology [J]. Acta mathematica scientia,Series A, 2017, 37(2): 326-341. |
[8] | Qiu Hua, Zhang Yingshu, Fang Shaomei. The Global Existence Result of a Leray-α-Oldroyd Model to the Incompressible Viscoelastic Flow [J]. Acta mathematica scientia,Series A, 2017, 37(1): 102-112. |
[9] | Gao Xinchun, Zhou Jian, Tian Miaoqing. Global Boundedness and Asymptotic Behavior in an Attraction-Repulsion Chemotaxis System with Logistic Source [J]. Acta mathematica scientia,Series A, 2017, 37(1): 113-121. |
[10] | Liu Yang. Potential Well and Application to Non-Newtonian Filtration Equations at Critical Initial Energy Level [J]. Acta mathematica scientia,Series A, 2016, 36(6): 1211-1220. |
[11] | Huang Shoujun, Wang Rui. Plane Wave Solutions to the Euler Equations for Chaplygin Gases [J]. Acta mathematica scientia,Series A, 2016, 36(4): 681-689. |
[12] | Xia Zhinan. On Existence and Asymptotic Behavior of Solutions for Functional Integral Equation of Volterra-Stieltjes Type [J]. Acta mathematica scientia,Series A, 2016, 36(1): 130-143. |
[13] | Lou Cuijuan, Yang Yin. Existence of Traveling Wave Solutions for a Classical Chemotaxis Model [J]. Acta mathematica scientia,Series A, 2015, 35(6): 1044-1058. |
[14] | Lei Qian, Li Ning, Yang Han. Blow Up and Asymptotic Behavior in the Beam Equation [J]. Acta mathematica scientia,Series A, 2015, 35(4): 738-747. |
[15] | Di Huafei, Shang Yadong. Global Existence and Nonexistence of Solutions for A Class of Fourth Order Wave Equation with Nonlinear Damping and Source Terms [J]. Acta mathematica scientia,Series A, 2015, 35(3): 618-633. |
|