Acta mathematica scientia,Series A ›› 2019, Vol. 39 ›› Issue (4): 894-908.
Previous Articles Next Articles
Received:
2018-02-28
Online:
2019-08-26
Published:
2019-09-11
Contact:
Junjun Wang
E-mail:wjunjun8888@163.com
Supported by:
CLC Number:
Junjun Wang,Xiaoxia Yang. Superconvergence Analysis of an H1-Galerkin Mixed Finite Element Method for Nonlinear Parabolic Equation[J].Acta mathematica scientia,Series A, 2019, 39(4): 894-908.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
1 |
Hayes L J . A modified backward time discretization for nonlinear parabolic equations using patch approximations. SIAM J Numer Anal, 1981, 18: 781- 793
doi: 10.1137/0718052 |
2 |
Rachford H , J r . Two-level discrete-time Galerkin approximations for second order nonlinear parabolic partial differential equations. SIAM J Numer Anal, 1973, 10 (6): 1010- 1026
doi: 10.1137/0710084 |
3 | Luskin M . A Galerkin method for nonlinear parabolic equations with nonlinear boundary conditions. SIAM J Numer Anal, 1979, 16 (2): 284- 299 |
4 | Thomée V . Galerkin Finite Element Methods for Parabolic Problems. Berlin: Springer, 2000 |
5 |
陈传军, 张晓艳, 赵鑫. 一维非线性抛物问题两层网格有限体积元逼近. 数学物理学报, 2017, 37A (5): 962- 975
doi: 10.3969/j.issn.1003-3998.2017.05.015 |
Chen C , Zhang X , Zhao X . A two-grid finite volume element approximation for one-dimensional nonlinear parabolic equations. Acta Math Sci, 2017, 37A (5): 962- 975
doi: 10.3969/j.issn.1003-3998.2017.05.015 |
|
6 |
Shi D , Wang J , Yan F . Unconditional superconvergence analysis for nonlinear parabolic equation with EQ1rot nonconforming finite element. J Sci Comput, 2017, 70 (1): 85- 111
doi: 10.1007/s10915-016-0243-4 |
7 |
Li D , Wang J . Unconditionally optimal error analysis of Crank-Nicolson Galerkin FEMs for a strongly nonlinear parabolic system. J Sci Comput, 2017, 72 (2): 892- 915
doi: 10.1007/s10915-017-0381-3 |
8 | Pani A K . An H1-Galerkin mixed finite element methods for parabolic partial differential equatios. SIAM J Numer Anal, 1998, 35 (2): 712- 727 |
9 | 石东洋, 史艳华. 半线性伪双曲方程最低阶的H1-Galerkin混合元方法. 系统科学与数学, 2015, 35 (5): 514- 526 |
Shi D , Shi Y . The lowest order H1-Galerkin mixed finite element method for semi-linear pseudo-hyperbolic equation. J Syst Sci Complex, 2015, 35 (5): 514- 526 | |
10 | Liu Y , Li H . H1-Galerkin mixed finite element methods for pseudo-hyperbolic equations. Appl Math Comput, 2009, 212 (2): 446- 457 |
11 |
Shi D , Wang J . Superconvergence analysis of an H1-Galerkin mixed finite element method for Sobolev equations. Comput Math Appl, 2016, 72 (6): 1590- 1602
doi: 10.1016/j.camwa.2016.07.023 |
12 | Shi D , Wang J . Unconditional superconvergence analysis of an H1-galerkin mixed finite element method for nonlinear Sobolev equations. Numer Methods Partial Differential Equations, 2018, 34 (1): 145- 166 |
13 |
Shi D , Liao X , Tang Q . Highly efficient H1-Galerkin mixed finite element method (MFEM) for parabolic integro-differential equatios. Appl Math Mech Engl Ed, 2014, 35 (7): 897- 912
doi: 10.1007/s10483-014-1833-9 |
14 | Lin Q , Lin J F . Finite Element Methods:Accuracy and Improvement. Beijing: Science Press, 2006 |
15 | 陈传淼, 黄云清. 有限元高精度理论. 长沙: 湖南科学技术出版社, 1995 |
Chen C , Huang Y . High Accuracy Theory of Finite Element Method. Changsha: Hunan Science and Technology Press, 1995 | |
16 | 陈艳萍, 鲁祖亮. 最优控制问题高效高精度算法. 北京: 科学出版社, 2015 |
Chen Y , Lu Z . High Efficient and Accuracy Numerical Methods for Optimal Control Probelems. Beijing: Science Press, 2015 |
[1] | Wang Yanping;Chen Guowang. Time-periodic Solution to a Generalized Ginzburg-Landau Model Equation in Population Problems [J]. Acta mathematica scientia,Series A, 2006, 26(2): 258-266. |
[2] | CHEN You-Peng, XIE Chun-Hong. Global Existence and Nonexistence for a Nonlinear Parabolic Equation with a Nonlinear Boundary Condition [J]. Acta mathematica scientia,Series A, 2005, 25(6): 881-889. |
|