Acta mathematica scientia,Series A ›› 2019, Vol. 39 ›› Issue (4): 839-850.
Previous Articles Next Articles
Yanhua Shi(),Yadong Zhang,Fenling Wang*(),Yanmin Zhao,Pingli Wang
Received:
2018-02-28
Online:
2019-08-26
Published:
2019-09-11
Contact:
Fenling Wang
E-mail:syhsdq@163.com;mathwfl@163.com
Supported by:
CLC Number:
Yanhua Shi,Yadong Zhang,Fenling Wang,Yanmin Zhao,Pingli Wang. High Accuracy Analysis of Linear Triangular Element for Time Fractional Diffusion Equations[J].Acta mathematica scientia,Series A, 2019, 39(4): 839-850.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
"
阶 | 阶 | 阶 | |||||
3.869e-03 | / | 4.026e-03 | / | 2.121e-02 | / | ||
1.687e-03 | 1.198 | 1.780e-03 | 1.178 | 9.538e-03 | 1.153 | ||
0.1 | 7.486e-04 | 1.172 | 7.959e-04 | 1.161 | 4.292e-03 | 1.152 | |
3.368e-04 | 1.152 | 3.570e-04 | 1.157 | 1.934e-03 | 1.150 | ||
2.091e-05 | / | 1.294e-05 | / | 1.656e-04 | / | ||
9.240e-06 | 1.178 | 5.780e-06 | 1.163 | 7.369e-05 | 1.168 | ||
0.01 | 4.125e-06 | 1.164 | 2.596e-06 | 1.155 | 3.308e-05 | 1.156 | |
1.855e-06 | 1.153 | 1.169e-06 | 1.151 | 1.490e-05 | 1.150 |
"
阶 | 阶 | 阶 | |||||
6.913e-04 | / | 9.330e-04 | / | 2.740e-03 | / | ||
1.890e-04 | 1.871 | 2.537e-04 | 1.879 | 7.466e-04 | 1.876 | ||
0.1 | 5.174e-05 | 1.869 | 6.974e-05 | 1.863 | 2.044e-04 | 1.869 | |
1.430e-05 | 1.856 | 1.9267e-05 | 1.856 | 5.649e-05 | 1.855 | ||
6.845e-05 | / | 8.960e-05 | / | 2.832e-04 | / | ||
1.881e-05 | 1.864 | 2.461e-05 | 1.864 | 7.790e-05 | 1.862 | ||
0.01 | 5.196e-06 | 1.856 | 6.799e-06 | 1.856 | 2.153e-05 | 1.855 | |
1.440e-06 | 1.851 | 1.885e-06 | 1.851 | 5.968e-06 | 1.851 |
"
阶 | 阶 | 阶 | 阶 | ||||||
1/4 | 3.952e-02 | / | 8.084e-02 | / | 1.437e-01 | / | 1.860e-01 | / | |
1.042e-02 | 1.923 | 2.140e-02 | 1.918 | 3.814e-02 | 1.914 | 4.942e-02 | 1.912 | ||
0.3 | 2.640e-03 | 1.981 | 5.424e-03 | 1.980 | 9.676e-03 | 1.979 | 1.254e-02 | 1.979 | |
6.622e-04 | 1.995 | 1.361e-03 | 1.995 | 2.428e-03 | 1.995 | 3.146e-03 | 1.995 | ||
1/4 | 3.642e-02 | / | 7.756e-02 | / | 1.413e-01 | / | 1.844e-01 | / | |
1/8 | 9.487e-02 | 1.941 | 2.039e-02 | 1.928 | 3.737e-02 | 1.919 | 4.889e-02 | 1.915 | |
0.6 | 2.395e-03 | 1.986 | 5.158e-03 | 1.983 | 9.471e-03 | 1.980 | 1.240e-02 | 1.979 | |
6.002e-04 | 1.997 | 1.293e-03 | 1.995 | 2.376e-03 | 1.995 | 3.111e-03 | 1.995 | ||
3.229e-02 | / | 7.331e-02 | / | 1.388e-01 | / | 1.833e-01 | / | ||
8.277e-03 | 1.964 | 1.908e-02 | 1.942 | 3.656e-02 | 1.925 | 4.851e-02 | 1.918 | ||
0.9 | 2.081e-03 | 1.992 | 4.814e-03 | 1.986 | 9.255e-03 | 1.982 | 1.230e-02 | 1.980 | |
5.209e-04 | 1.998 | 1.206e-03 | 1.997 | 2.321e-03 | 1.996 | 3.084e-03 | 1.995 |
"
阶 | 阶 | 阶 | 阶 | ||||||
5.310e-02 | / | 1.103e-01 | / | 1.982e-01 | / | 2.575e-01 | / | ||
1.387e-02 | 1.937 | 2.894e-02 | 1.930 | 5.217e-02 | 1.925 | 6.790e-02 | 1.923 | ||
0.3 | 3.506e-03 | 1.984 | 7.324e-03 | 1.982 | 1.321e-02 | 1.981 | 1.720e-02 | 1.981 | |
8.791e-04 | 1.995 | 1.837e-03 | 1.996 | 3.315e-03 | 1.995 | 4.316e-03 | 1.995 | ||
4.606e-02 | / | 1.028e-01 | / | 1.926e-01 | / | 2.538e-01 | / | ||
1.183e-02 | 1.961 | 2.673e-02 | 1.944 | 5.048e-02 | 1.932 | 6.676e-02 | 1.927 | ||
0.6 | 2.977e-03 | 1.990 | 6.749e-03 | 1.986 | 1.277e-02 | 1.983 | 1.690e-02 | 1.982 | |
7.457e-04 | 1.997 | 1.691e-03 | 1.996 | 3.202e-03 | 1.996 | 4.240e-03 | 1.995 | ||
3.674e-02 | / | 9.320e-02 | / | 1.870e-01 | / | 2.514e-01 | / | ||
9.223e-03 | 1.994 | 2.389e-02 | 1.964 | 4.872e-02 | 1.940 | 6.593e-02 | 1.931 | ||
0.9 | 2.311e-03 | 1.997 | 6.012e-03 | 1.991 | 1.231e-02 | 1.985 | 1.668e-02 | 1.983 | |
5.781e-04 | 1.999 | 1.505e-03 | 1.998 | 3.085e-03 | 1.996 | 4.182e-03 | 1.996 |
"
阶 | 阶 | 阶 | 阶 | ||||||
1.540e-01 | / | 3.080e-01 | / | 5.390e-01 | / | 6.931e-01 | / | ||
4.179e-02 | 1.882 | 8.357e-02 | 1.882 | 1.462e-01 | 1.882 | 1.880e-01 | 1.882 | ||
0.3 | 1.067e-02 | 1.970 | 2.133e-02 | 1.970 | 3.733e-02 | 1.970 | 4.800e-02 | 1.970 | |
2.681e-03 | 1.992 | 5.361e-03 | 1.992 | 9.383e-03 | 1.992 | 1.206e-02 | 1.992 | ||
1.545e-01 | / | 3.082e-01 | / | 5.391e-01 | / | 6.931e-01 | / | ||
4.190e-02 | 1.882 | 8.362e-02 | 1.882 | 1.462e-01 | 1.882 | 1.880e-01 | 1.882 | ||
0.6 | 1.069e-02 | 1.970 | 2.134e-02 | 1.970 | 3.733e-02 | 1.970 | 4.780e-02 | 1.970 | |
2.687e-03 | 1.993 | 5.364e-03 | 1.992 | 9.382e-03 | 1.992 | 1.206e-02 | 1.992 | ||
1.557e-01 | / | 3.088e-01 | / | 5.391e-01 | / | 6.931e-01 | / | ||
4.221e-02 | 1.883 | 8.379e-02 | 1.882 | 1.463e-01 | 1.882 | 1.880e-01 | 1.882 | ||
0.9 | 1.077e-02 | 1.971 | 2.138e-02 | 1.970 | 3.734e-02 | 1.970 | 4.800e-02 | 1.970 | |
2.071e-03 | 1.993 | 5.374e-03 | 1.993 | 9.384e-03 | 1.992 | 1.206e-02 | 1.992 |
1 | He J H. Nonlinear Oscillation with Fractional Derivative and its Applications//Wen B C. International Conference on Vibrating Engineering' 98. Shenyang:Northeastern Univ Press, 1998:288-291 |
2 | Ming C , Liu F , Zheng L , et al. Analytical solutions of multi-term time fractional differential equations and application to unsteady flows of generalized viscoelastic fluid. Computational Methods in Applied Mathematics, 2016, 72: 2084- 2097 |
3 | He J H . Approximate analytical solution for seepage flow with fractional derivatives in porous media. Computer Methods in Applied Mechanics & Engineering, 1998, 167 (1-2): 57- 68 |
4 | Mainardi F. Fractional Calculus, Some Basic Problems in Continuumand Statisticalmechanics//Carpinteri A, Mainardi F, et al. Fractals and Fractional Calculus in Continuum Mechanics. New York:Springer Verlag, 1997:291-348 |
5 | Kilbas A, Srivastava H, Trujillo J. Theory and Applications of Fractional Differential Equations. Amsterdam:Elsevier, 2006 |
6 | Liu F , Zhuang P , Liu Q . Numerical Methods of Fractional Partial Differential Equations and Applications. Beijing: Science Press, 2015 |
7 | Zhang Y N , Sun Z Z , Liao H L . Finite difference methods for the time fractional diffusion equations and non-uniform meshes. Journal of Computational Physics, 2014, 265 (3): 195- 210 |
8 | Ye H , Liu F , Anh V . Compact difference scheme for distributed-order time-fractional diffusion-wave equation on bounded domains. Journal of Computational Physics, 2015, 98: 652- 660 |
9 |
Zeng F , Liu F , Li C , et al. Crank-nicolson ADI spectral method for the two-dimensional Riesz space fractional nonlinear reaction-diffusion equation. SIAM Journal on Numerical Analysis, 2014, 52 (6): 2599- 2622
doi: 10.1137/130934192 |
10 |
Zheng M , Liu F , Anh V , et al. A high-order spectral method for the multi-term time-fractional diffusion equations. Applied Mathematical Modelling, 2016, 40 (7-8): 4970- 4985
doi: 10.1016/j.apm.2015.12.011 |
11 |
Liu F , Zhuang P , Turner I , et al. A new fractional finite volume method for solving the fractional diffusion equation. Applied Mathematical Modelling, 2014, 38 (15-16): 3871- 3878
doi: 10.1016/j.apm.2013.10.007 |
12 |
Jia J , Wang H . A fast finite volume method for conservative space-fractional diffusion equations in convex domains. Journal of Computational Physics, 2016, 310: 63- 84
doi: 10.1016/j.jcp.2016.01.015 |
13 | Wei L . Analysis of a new finite difference/local discontinuous Galerkin method for the fractional diffusionwave equation. Numerical Algorithms, 2017, 304: 180- 189 |
14 |
Jin B , Lazarov R , Liu Y , et al. The Galerkin finite element method for a multi-term time-fractional diffusion equation. Journal of Computational Physics, 2015, 281: 825- 843
doi: 10.1016/j.jcp.2014.10.051 |
15 |
Zhuang P , Liu F , Turner I , et al. Galerkin finite element method and error analysis for the fractional cable equation. Numerical Algorithms, 2016, 72 (2): 447- 466
doi: 10.1007/s11075-015-0055-x |
16 |
Metzler R , Klafter J . The randomwalk's guide to anomalous diffusion:a fractional dynamics approach. Physics Reports, 2000, 339 (1): 1- 77
doi: 10.1016/S0370-1573(00)00070-3 |
17 | Lin Q , Tobiska L , Zhou A H . Superconvergence and extrapolation on nonconforming low order finite elements applied to the Poission equation. IMA Journal of Numerical Analysis, 2005, 25 (1): 160- 181 |
18 | 石东洋, 史艳华. 半线性伪双曲方程最低阶的H1-Galerkin混合元方法. 系统科学与数学, 2015, 35 (5): 514- 526 |
Shi D Y , Shi Y H . The lowest order H1-Galerkin mixed finite element method for semi-linear pseudohyperbolic equation. Journal of Systems Science and Mathematical Sciences, 2015, 35 (5): 514- 526 | |
19 |
张铁. 抛物型积分-微分方程有限元近似的超收敛性质. 高等学校计算数学学报, 2001, 23 (3): 193- 201
doi: 10.3969/j.issn.1000-081X.2001.03.001 |
Zhang T . Superconvergence of finite element approximations to integro-differential equations of parabolic type. Numerical Mathematies A Journal of Chinese Universities, 2001, 23 (3): 193- 201
doi: 10.3969/j.issn.1000-081X.2001.03.001 |
|
20 | Shi D Y , Wang J J . Superconvergence analysis of an H1-Galerkin mixed finite element method for Sobolev equations. Computers & Mathematics with Applications, 2016, 72 (6): 1590- 1602 |
21 |
Shi D Y , Yang H J . A new approach of superconvergence analysis for nonlinear BBM equation on anisotropic meshes. Applied Mathematics Letters, 2016, 58: 74- 80
doi: 10.1016/j.aml.2016.02.007 |
22 |
Zhao Y M , Zhang Y D , Shi D Y , et al. Superconvergence analysis of nonconforming fnite element method for two-dimensional time fractional difusion equations. Applied Mathematics Letters, 2016, 59: 38- 47
doi: 10.1016/j.aml.2016.03.005 |
23 |
Zhao Y M , Chen P , Bu W P , et al. Two mixed finite element methods for time-fractional diffusion equations. Journal of Scientific Computing, 2017, 70 (1): 407- 428
doi: 10.1007/s10915-015-0152-y |
24 |
Zhao Y M , Zhang Y D , Liu F , et al. Analytical solution and nonconforming finite element approximation for the 2D multi-term fractional subdiffusion equation. Applied Mathematical Modelling, 2016, 40: 8810- 8825
doi: 10.1016/j.apm.2016.05.039 |
25 |
石东洋, 梁慧. 各向异性网格下线性三角形元的超收敛性分析. 工程数学学报, 2007, 24 (3): 487- 493
doi: 10.3969/j.issn.1005-3085.2007.03.014 |
Shi D Y , Liang H . The superconvergence analysis of linear triangular element on anisotropic meshes. Chinese Journal of Engineering Mathematics, 2007, 24 (3): 487- 493
doi: 10.3969/j.issn.1005-3085.2007.03.014 |
|
26 | 石东洋, 王芬玲, 赵艳敏. 非线性sine-Gordon方程的各向异性线性元高精度分析新模式. 计算数学, 2014, 36 (3): 245- 256 |
Shi D Y , Wang F L , Zhao Y M . A new pattern of high accuracy analysis of anisotropic linear element for nonlinear sine-gordon equations. Mathematica Numerica Sinica, 2014, 36 (3): 245- 256 | |
27 | Shi D Y , Wang P L , Zhao Y M . Superconvergence analysis of anisotropic linear triangular finite element for nonlinear Schrödinger equation. Applied Mathematics Letters, 2014, 38 (38): 129- 134 |
28 | 林群, 严宁宁. 高效有限元构造与分析. 保定: 河北大学出版社, 1996 |
Lin Q , Y N N . The Construction and Analysis of High Eficient Finite Element Methods. Baoding: Hebei University Press, 1996 | |
29 | 张铁. 偏微分-积分方程的有限元方法. 北京: 科学出版社, 2009 |
Zhang T . Finite Element Methods for Partial Differentio-Integral Equations. Beijing: Science Press, 2009 |
|