Acta mathematica scientia,Series A ›› 2019, Vol. 39 ›› Issue (4): 823-831.
Previous Articles Next Articles
Qinghua Zhou1,Li Wan2,*(),Jie Liu2
Received:
2018-04-01
Online:
2019-08-26
Published:
2019-09-11
Contact:
Li Wan
E-mail:wanlinju@aliyun.com
Supported by:
CLC Number:
Qinghua Zhou,Li Wan,Jie Liu. Global Attracting Set for Neutral Type Hopfield Neural Networks with Time-Varying Delays[J].Acta mathematica scientia,Series A, 2019, 39(4): 823-831.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
1 |
Huang Y , Yang X S . Hyperchaos and bifurcation in a new class of four-dimensional Hopfield neural networks. Neurocomputing, 2006, 69: 1787- 1795
doi: 10.1016/j.neucom.2005.11.001 |
2 |
He W , Cao J . Stability and bifurcation of a class of discrete-time neural networks. Appl Math Model, 2007, 31: 2111- 2122
doi: 10.1016/j.apm.2006.08.006 |
3 | Huang W , Huang Y . Chaos of a new class of Hopfield neural networks. Appl Math Comput, 2008, 206: 1- 11 |
4 |
Kaslik E , Balint St . Bifurcation analysis for a discrete-time Hopfield neural network of two neurons with two delays and self-connections. Chaos Soliton Fract, 2009, 39: 83- 91
doi: 10.1016/j.chaos.2007.01.126 |
5 |
Zheng P S , Tang W S , Zhang J X . Some novel double-scroll chaotic attractors in Hopfield networks. Neurocomputing, 2010, 73: 2280- 2285
doi: 10.1016/j.neucom.2010.02.015 |
6 |
Marichal R L , Gonzalez E J , Marichal G N . Hopf bifurcation stability in Hopfield neural networks. Neural Netw, 2012, 36: 51- 58
doi: 10.1016/j.neunet.2012.09.007 |
7 |
Mazrooei-Sebdani R , Farjami S . Bifurcations and chaos in a discrete-time-delayed Hopfield neural network with rings tructures and different internal decays. Neurocomputing, 2013, 99: 154- 162
doi: 10.1016/j.neucom.2012.06.007 |
8 |
Akhmet M , Fen M . Generation of cyclic/toroidal chaos by Hopfield neural networks. Neurocomputing, 2014, 145: 230- 239
doi: 10.1016/j.neucom.2014.05.038 |
9 |
Mazrooei-Sebdani R , Farjami S . On a discrete-time-delayed Hopfield neural network with ring structures and different internal decays: Bifurcations analysis and chaotic behavior. Neurocomputing, 2015, 151: 188- 195
doi: 10.1016/j.neucom.2014.06.079 |
10 |
Wang Q , Fang Y Y , Li H , Su L J , Dai B X . Anti-periodic solutions for high-order Hopfield neural networks with impulses. Neurocomputing, 2014, 138: 339- 346
doi: 10.1016/j.neucom.2014.01.028 |
11 |
Yang L , Li Y K . Existence and exponential stability of periodic solution for stochastic Hopfield neural networks on time scales. Neurocomputing, 2015, 167: 543- 550
doi: 10.1016/j.neucom.2015.04.038 |
12 |
Wang C . Piecewise pseudo-almost periodic solution for impulsive non-autonomous high-order Hopfield neural networks with variable delays. Neurocomputing, 2016, 171: 1291- 1301
doi: 10.1016/j.neucom.2015.07.054 |
13 |
Kaslik E , Sivasundaram S . Multistability in impulsive hybrid Hopfield neural networks with distributed delays. Nonlinear Anal-Real, 2011, 12: 1640- 1649
doi: 10.1016/j.nonrwa.2010.10.018 |
14 |
Park M J , Kwon O M , Park J H , Lee S M . Simplified stability criteria for fuzzy Markovian jumping Hopfield neural networks of neutral type with interval time-varying delays. Expert Syst Appl, 2012, 39: 5625- 5633
doi: 10.1016/j.eswa.2011.11.055 |
15 |
Wang H , Yu Y G , Wen G G . Stability analysis of fractional-order Hopfield neural networks with time delays. Neural Netw, 2014, 55: 98- 109
doi: 10.1016/j.neunet.2014.03.012 |
16 |
Wang H , Yu Y G , Wen G G , et al. Global stability analysis of fractional-order Hopfield neural networks with time delay. Neurocomputing, 2015, 154: 15- 23
doi: 10.1016/j.neucom.2014.12.031 |
17 |
Dharani S , Rakkiyappan R , Cao J D . New delay-dependent stability criteria for switched Hopfield neural networks of neutral type with additive time-varying delay components. Neurocomputing, 2015, 151: 827- 834
doi: 10.1016/j.neucom.2014.10.014 |
18 |
Song B , Zhang Y , Shu Z , Hu F N . Stability analysis of Hopfield neural networks perturbed by Poisson noises. Neurocomputing, 2016, 196: 53- 58
doi: 10.1016/j.neucom.2016.02.034 |
19 |
Zhang S , Yu Y G , Wang Q . Stability analysis of fractional-order Hopfield neural networks with discontinuous activation functions. Neurocomputing, 2016, 171: 1075- 1084
doi: 10.1016/j.neucom.2015.07.077 |
20 |
Liao X X , Luo Q , Zeng Z G . Positive invariant and global exponential attractive sets of neural networks with time-varying delays. Neurovomputing, 2008, 71: 513- 518
doi: 10.1016/j.neucom.2007.07.017 |
21 | Crauel H , Debussche A , Flandoli F . Random attractors. J Dynam Differ Equ, 1995, 9: 307- 341 |
22 | Kloeden P , Stonier D J . Cocycle attractors in nonautonomously perturbed dif- ferential equations. Dynam Continuous Discrete Impulsive Systems, 1998, 4: 211- 226 |
23 | Cheban D N . Dissipative functional differential equations. Bull Acad Sci Rep Moldova Mat, 1991, 2 (5): 3- 12 |
24 |
Caraballo T , Marn-Rubio P , Valero J . Autonomous and non-autonomous attractors for differential equations with delays. J Differ Equ, 2005, 208: 9- 41
doi: 10.1016/j.jde.2003.09.008 |
25 |
Caraballo T , Kloeden P E , Real J . Pullback and forward attractors for a damped wave equation with delays. Stoch Dyn, 2004, 4: 405- 423
doi: 10.1142/S0219493704001139 |
26 |
Caraballo T , Real J . Attractors for 2D-Navier-Stokes models with delays. J Differ Equ, 2004, 205: 271- 297
doi: 10.1016/j.jde.2004.04.012 |
27 |
Zhang L X , Boukas E K , Haidar A . Delay-range-dependent control synthesis for time-delay systems with actuator saturation. Automatica, 2008, 44: 2691- 2695
doi: 10.1016/j.automatica.2008.03.009 |
28 |
Xu D Y . Integro-differential equations and delay integral inequalities. Tohoku Math J, 1992, 44: 365- 378
doi: 10.2748/tmj/1178227303 |
29 |
Zhao H Y . Invariant set and attractor of nonautonomous functional differential systems. J Math Anal Appl, 2003, 282: 437- 443
doi: 10.1016/S0022-247X(02)00370-0 |
30 |
Xu D Y , Yang Z C . Attracting and invariant sets for a class of implusive functional defferential equations. J Math Anal Appl, 2007, 329: 1036- 1044
doi: 10.1016/j.jmaa.2006.05.072 |
31 |
Tian H . The exponential asymtotic stability of singularly perturbed delay differential equations with a bounded lag. J Math Anal Appl, 2002, 270: 143- 149
doi: 10.1016/S0022-247X(02)00056-2 |
32 |
Xu D Y , Yang Z G . Exponential stability of nonlinear implusive neutral differential equations with delays. Nonlinear Anal Theory Methods Appl, 2007, 67: 1426- 1439
doi: 10.1016/j.na.2006.07.043 |
33 | Zhu W . Global exponential stability of impulisive reaction-diffusion equation with variable delays. Appl Math Comput, 2008, 205: 362- 369 |
34 |
Teng L Y , Xu D Y . Global attracting set for non-autonomous neutral networks with distributed delays. Neurocomputing, 2012, 94: 64- 67
doi: 10.1016/j.neucom.2012.04.020 |
35 |
Liu L , Zhu Q X , Feng L C . Lagrange stability for delayed recurrent neural networks with Markovian switching based on stochastic vector Halandy inequalities. Neurocomputing, 2018, 275: 1614- 1621
doi: 10.1016/j.neucom.2017.10.006 |
36 |
Popa A C . Global exponential stability of neutral-type octonion-valued neural networks with time-varying delays. Neurocomputing, 2018, 309: 117- 133
doi: 10.1016/j.neucom.2018.05.004 |
37 | LaSalle J P. The Stability of Dynamical System. Philadelphia: SIAM, 1976 |
[1] | Xi Boyan, Qi Feng. Some Integral Inequalities of Hermite-Hadamard Type for s-Logarithmically Convex Functions [J]. Acta mathematica scientia,Series A, 2015, 35(3): 515-524. |
[2] | WU Yu, TANG Min, ZHOU Cha-Jin. A New Weakly Singular Wendroff Integral Inequalities [J]. Acta mathematica scientia,Series A, 2014, 34(6): 1465-1473. |
[3] | LIU Qiong. A Integral Inequality with Multi-parameters and the Kernel of Hyperbolic Cotangent Function [J]. Acta mathematica scientia,Series A, 2014, 34(4): 851-858. |
[4] | LIU Qiong, LONG Shun-Chao. A Generalization of Hilbert-type Integral Inequality [J]. Acta mathematica scientia,Series A, 2014, 34(1): 179-185. |
[5] | ZHANG Yu-Tian, LUO Qi. Global Exponential Stability of Impulsive Reaction-Diffusion Cellular Neural Networks with Time-Varying Delays and Neumann Boundary Condition [J]. Acta mathematica scientia,Series A, 2013, 33(4): 777-786. |
[6] | KUANG Ji-Chang. Hilbert-type Integral Inequalities in Normed Linear Spaces [J]. Acta mathematica scientia,Series A, 2013, 33(1): 1-5. |
[7] | HONG Yong. On a Multiple Hardy-type Integral Inequality with a Best Constant Factor and Its Application [J]. Acta mathematica scientia,Series A, 2011, 31(6): 1586-1591. |
[8] | LI Jun-Min. Adaptive Iterative Learning Control for Nonlinearly Parameterized Systems with Time-Varying Delays [J]. Acta mathematica scientia,Series A, 2011, 31(3): 682-690. |
[9] | XIN Dong-Mei, YANG Bi-Cheng. On a New Extension of a Hilbert-type Integral Inequality [J]. Acta mathematica scientia,Series A, 2010, 30(6): 1648-1653. |
[10] | LU Sheng-Jie, TAO Xiang-Xing. Multiple Unsymmetrical Core Hardy-Hilbert's Integral Inequalities [J]. Acta mathematica scientia,Series A, 2009, 29(3): 597-606. |
[11] | Gao Hongya; Hou Lanru. Two-Weight Integral Inequalities for Conjugate ${\cal A}$-Harmonic Tensors [J]. Acta mathematica scientia,Series A, 2008, 28(2): 341-348. |
[12] | Li Juan. Two-weight Integral Inequalities for Differential Forms [J]. Acta mathematica scientia,Series A, 2007, 27(3): 515-523. |
|