Acta mathematica scientia,Series A ›› 2019, Vol. 39 ›› Issue (4): 730-737.
Previous Articles Next Articles
Received:
2018-04-26
Online:
2019-08-26
Published:
2019-09-11
Contact:
Wensheng Jia
E-mail:jws0505@163.com
Supported by:
CLC Number:
Xiaoling Qiu,Wensheng Jia. An Approximation Theorem of Variational Inequalities Under Bounded Rationality[J].Acta mathematica scientia,Series A, 2019, 39(4): 730-737.
1 |
Chen S L , Huang N J . Vector variational inequalities and vector optimization problems on Hadamard manifolds. Optimization Letters, 2016, 10 (4): 753- 767
doi: 10.1007/s11590-015-0896-1 |
2 |
Chen X J , Pong T K , Wets Roger J-B . Two-stage stochastic variational inequalities:an ERM-solution procedure. Math Program Ser B, 2017, 165: 71- 111
doi: 10.1007/s10107-017-1132-9 |
3 | 邓喜才, 向淑文. 有限理性与广义向量变分不等式问题的良定. 数学的实践与认识, 2015, 45 (9): 176- 182 |
Deng X L , Xiang S W . Bounded rationality and well-posedness for generalized vector variational inequalities problems. Mathematics in Practice and Theory, 2015, 45 (9): 176- 182 | |
4 | 何炳生. 凸优化和单调变分不等式收缩算法的统一框架. 中国科学:数学, 2018, 48 (2): 255- 272 |
He B S . A uniform framework of contraction methods for convex optimization and monotone variational inequality. Scientia Sinica Mathematics, 2018, 48 (2): 255- 272 | |
5 |
Pu Y J , Yang Z . Stability of solutions for variational relation problems with applications. Nonlinear Analysis, 2012, 75: 1758- 1767
doi: 10.1016/j.na.2011.09.007 |
6 |
童小娇, 何炳生. 一类单调变分不等式的非精确交替方向法. 数学物理学报, 2006, 26A (2): 273- 282
doi: 10.3321/j.issn:1003-3998.2006.02.014 |
Tong X J , He B S . An inexact alternating direction method for solving a class of monotone variational inequality. Acta Mathematics Scientia, 2006, 26A (2): 273- 282
doi: 10.3321/j.issn:1003-3998.2006.02.014 |
|
7 | 俞建, 彭定涛. 大多数单调变分不等式有唯一解. 应用数学学报, 2017, 40 (4): 481- 488 |
Yu J , Peng D T . Most of the monotone variational inequalities have unique solution. Acta Mathematicae Applicatae Sinica, 2017, 40 (4): 481- 488 | |
8 |
李茹, 余国林, 刘伟, 刘三阳. 一类广义不变凸函数和向量变分不等式. 数学物理学报, 2017, 37A (6): 1029- 1039
doi: 10.3969/j.issn.1003-3998.2017.06.003 |
Li R , Yu G L , Liu W , Liu S Y . A class of generalized invex functions and vector variational inequalities. Acta Mathematics Scientia, 2017, 37A (6): 1029- 1039
doi: 10.3969/j.issn.1003-3998.2017.06.003 |
|
9 |
张石生, 李向荣, 陈志坚, 柳京爱. 不动点问题平衡问题及变分不等式问题的具弱压缩的粘性逼近. 应用数学和力学, 2010, 31 (10): 1211- 1220
doi: 10.3879/j.issn.1000-0887.2010.10.008 |
Zhang S S , Li X R , Chen Z J , Liu J A . Viscosity approximation with weak contractions for fixed point problem equilibrium problem and variational inequality problem. Applied Mathematics and Mechnics, 2010, 31 (10): 1211- 1220
doi: 10.3879/j.issn.1000-0887.2010.10.008 |
|
10 | Facchinei F , Pang J S . Finite-Dimensional Variatioal Inequalities and Completementarity Problems (1)(2). Berlin: Springer, 2003 |
11 | Giannessi F , Maugeri A . Variational Analysis and Applications. New York: Springer, 2005 |
12 | Simon H A . Administrative Behavior:A Study of Decision-Making Processes in Administrative Organizations. Beijing: Mechanical Industry Press, 2013 |
13 | 俞建. 有限理性与博弈论中平衡点集的稳定性. 北京: 科学出版社, 2017 |
Yu J . Bounded Rationality and Stability of Equilibrium Points Sets in Game Theory. Beijing: Science Press, 2017 | |
14 | Qiu X L , Jia W S , Peng D T . An approximate theorem and generic convergence for equilibrium problems. Journal of Inequalities and Applications, 2018, 30: 1- 12 |
15 | Fort M K . Points of continuity of semicontinuous functions. Publ Math Debrecen, 1951, 2: 100- 102 |
16 | 俞建. 博弈论与非线性分析续论. 北京: 科学出版社, 2011 |
Yu J . Game Theory and Nonlinear Analysis (continued). Beijing: Science Press, 2011 | |
17 | Tan K K , Yu J , Yuan X Z . The uniqueness of saddle points. Bull Pol Acad Sci Math, 1995, 43: 119- 129 |
18 |
Yu J . Essential equilibria of n-person noncooperative games. Journal of Mathematical Economics, 1999, 31 (3): 361- 372
doi: 10.1016/S0304-4068(97)00060-8 |
19 | 俞建. 博弈论与非线性分析. 北京: 科学出版社, 2008 |
Yu J . Game Theory and Nonlinear Analysis. Beijing: Science Press, 2008 | |
20 |
Yu J . Essential Weak efficient solution in multiobjective optimization problems. J Math Anal Appl, 1992, 166: 230- 235
doi: 10.1016/0022-247X(92)90338-E |
21 | Aliprantis C D , Border K C . Infinite Dimensional Analysis. Berlin: Springer-Verlag, 2006 |
[1] | ZHU Xing-Hua, Xiao-Jian-Zhong. The Minimum Selections of Set-Valued Mappings and Applications [J]. Acta mathematica scientia,Series A, 2011, 31(2): 500-507. |
[2] | GUO Shun-Sheng, LIU Guo-Fen, SONG Zhan-Jie. On the Approximation for Bernstein-Durrmeyer-Bézier Operators in Lp Spaces [J]. Acta mathematica scientia,Series A, 2010, 30(6): 1424-1434. |
[3] | Yu Guolin; Liu Sanyang. Super Efficiency of the ic-cone-convexlike Set-valued Optimization Problems in Locally Convex Spaces [J]. Acta mathematica scientia,Series A, 2008, 28(4): 679-687. |
[4] |
Yu Guolin;Liu Sanyang.
The Henig Efficient Subdifferential of Set-valued Mapping and Stability [J]. Acta mathematica scientia,Series A, 2008, 28(3): 438-446. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 218
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 85
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||||||
Discussed |
|