| 1 | Araujo A , Giné E . The Central Limit Theorem for Real and Banach Valued Random Variables. New York: John Wiley & Sons, 1980 | | 2 | Basrak B, Davis R A, Mikosch T. A characterization of multivariate regular variation. Annals of Applied Probability, 2002, 12(3): 908-920 | | 3 | de Haan L , Ferreira A . Extreme Value Theory. New York: Springer, 2006 | | 4 | Hua L , Joe H . Second order regular variation and conditional tail expectation of multiple risks. Insurance:Mathmatics and Economics, 2011, 49: 537- 546 | | 5 | Hult H , Lindskog F . Multivariate extremes, aggregation and dependence in elliptical distributions. Advances in Applied Probability, 2002, 34 (3): 587- 608 | | 6 | Mainik G. On Asymptotic Diversification Effects for Heavy-Tailed Risks[D]. Freiburg: University of Freiburg, 2010 | | 7 | Mainik G , Rüschendorf L . On optimal portfolio diversification with respect to extreme risks. Finance and Stochastics, 2010, 14: 593- 623 | | 8 | Mainik G , Rüschendorf L . Ordering of multivariate risk models with respect to extreme portfolio losses. Statistics & Risk Modelling, 2012, 29: 73- 105 | | 9 | Mainik G , Embrechts P . Diversification in heavy-tailed portfolios:properties and pitfalls. Annals of Actuarial Science, 2013, 7 (1): 26- 45 | | 10 | Sidney I R . Extreme Values, Regular Variation, and Point Processes. New York: Springer-Verlag, 1987 | | 11 | Sidney I R . Heavy-Tail Phenomena. New York: Springer, 2007 |
|