Acta mathematica scientia,Series A ›› 2018, Vol. 38 ›› Issue (6): 1239-1244.
Yanbing Yang1,2,Wei Lian3,Shaobin Huang2,Runzhang Xu1,*()
Received:
2017-08-29
Online:
2018-12-26
Published:
2018-12-27
Contact:
Runzhang Xu
E-mail:xurunzh@163.com
Supported by:
CLC Number:
Yanbing Yang,Wei Lian,Shaobin Huang,Runzhang Xu. Finite Time Blow up of Solutions for Nonlinear Wave Equation with General Nonlinearity for Arbitrarily Positive Initial Energy[J].Acta mathematica scientia,Series A, 2018, 38(6): 1239-1244.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
1 |
Sattinger D H . On global solution of nonlinear hyperbolic equations. Arch Ration Mech Anal, 1968, 30: 148- 172
doi: 10.1007/BF00250942 |
2 |
Levine H A . Some additional remarks on the nonexistence of global solutions to nonlinear wave equations. SIAM J Math Anal, 1974, 5: 138- 146
doi: 10.1137/0505015 |
3 | Levine H A . Instability and nonexistence of global solutions of nonlinear wave equation of the form Putt=Au + F(u). Trans Amer Math Soc, 1974, 192: 1- 21 |
4 |
Ball J M . Remarks on blow-up and nonexistence theorems for nonlinear evolution equations. Quart J Math, 1977, 28: 473- 486
doi: 10.1093/qmath/28.4.473 |
5 |
Payne L E , Sattinger D H . Saddle points and instability of nonlinear hyperbolic equations. Israel J Math, 1975, 22: 273- 303
doi: 10.1007/BF02761595 |
6 |
Liu Y C , Zhao J S . On potential wells and applications to semilinear hyperbolic equations and parabolic equations. Nonlinear Anal, 2006, 64: 2665- 2687
doi: 10.1016/j.na.2005.09.011 |
7 |
Xu R Z . Initial boundary value problem for semilinear hyperbolic equations and parabolic equations with critical initial data. Quart Appl Math, 2010, 68: 459- 468
doi: 10.1090/qam/2010-68-03 |
8 |
Esquivel-Avila J A . Blow up and asymptotic behavior in a nondissipative nonlinear wave equation. Appl Anal, 2014, 93: 1963- 1978
doi: 10.1080/00036811.2013.859250 |
9 | Gazzola F , Squassina M . Global solutions and finite time blow up for damped semilinear wave equations. Ann Inst H Poincaré Anal Non Linéaire, 2006, 93: 185- 207 |
10 | Chen H , Liu G W . Global existence, uniform decay and exponential growth for a class of semi-linear wave eqution with strong damping. Acta Math Sci, 2013, 33B (1): 41- 58 |
11 |
狄华斐, 尚亚东. 一类带有非线性阻尼项和源项的四阶波动方程整体解的存在性与不存在性. 数学物理学报, 2015, 35A (3): 618- 633
doi: 10.3969/j.issn.1003-3998.2015.03.016 |
Di H F , Shang Y D . Global existence and nonexistence of solutions for a class of fourth order wave equation with nonlinear damping and source terms. Acta Math Sci, 2015, 35A (3): 618- 633
doi: 10.3969/j.issn.1003-3998.2015.03.016 |
|
12 |
苏晓, 王书彬. 任意正初始能量状态下半线性波动方程解的有限时间爆破. 数学物理学报, 2017, 37A (6): 1085- 1093
doi: 10.3969/j.issn.1003-3998.2017.06.008 |
Su X , Wang S B . Finite time blow-up for the damped semilinear wave equations with arbitrary positive initial energy. Acta Math Sci, 2017, 37A (6): 1085- 1093
doi: 10.3969/j.issn.1003-3998.2017.06.008 |
|
13 | 沈继红, 张明有, 杨延冰, 等. 具阻尼的高维广义Boussinesq方程的Cauchy问题的整体适定性. 数学物理学报, 2014, 34A (5): 1173- 1187 |
Shen J H , Zhang M Y , Yang Y B , et al. Global well-posedness of Cauchy problem for damped multidimensional generalized Baussinesq equations. Acta Math Sci, 2014, 34A (5): 1173- 1187 |
|