Acta mathematica scientia,Series A ›› 2018, Vol. 38 ›› Issue (6): 1205-1223.

Previous Articles     Next Articles

Global Attractor in H1(Rn) x Lu2(R+;H1(Rn)) for the Nonclassical Diffusion Equations with Fading Memory

Xuan Wang*(),Ying Han(),Chenghua Gao()   

  1. College of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070
  • Received:2017-07-17 Online:2018-12-26 Published:2018-12-27
  • Contact: Xuan Wang E-mail:wangxuan@nwnu.edu.cn;469328224@qq.com;gaochenghua@nwnu.edu.cn
  • Supported by:
    the NSFC(11761062);the NSFC(11561064);the NSFC(11661071);the Young Teachers Scientific Research Ability Promotion Plan of Northwest Normal University(NWNU-LKQN-14-6);the Science Research Project for Colleges and Universities of Gansu Province(2016A-003)

Abstract:

In this paper, we are concerned with the dynamical behavior of the nonclassical diffusion equations with fading memory and supercritical nonlinearity on unbounded domain ${{\mathbb{R}}^{n}}$. By applying semigroup theory and method of contractive function, we obtain the existence of global attractors in ${{H}^{1}}\left( {{\mathbb{R}}^{n}} \right)\times L_{\mu }^{2}\left( {{\mathbb{R}}^{+}};{{H}^{1}}\left( {{\mathbb{R}}^{n}} \right) \right)$, when the external forcing term g merely belongs to H-1(${{\mathbb{R}}^{n}}$).

Key words: Nonclassical diffusion equation, Fading memory, Contractive function, Global attractor

CLC Number: 

  • O175.8
Trendmd