Wenjuan Tang, Zhengjie Zhang. Two Solutions for Quasilinear Elliptic Equation with Hardy Potential on RN[J].Acta mathematica scientia,Series A, 2018, 38(6): 1153-1161.
Brezis H , Lieb E . A relation betweem pointwise convergence of functions and convergence of functionals. Proc Amer Math Soc, 1983, 88: 486- 490
doi: 10.1090/S0002-9939-1983-0699419-3
2
Brezis H , Nirenberg L . Positive solutions of nonlinear elliptic equations involving critical Soblev exponent. Comm Pure Appl Math, 1983, 36: 437- 477
doi: 10.1002/(ISSN)1097-0312
3
Abdellaoui B , Felli V , Peral I . Existence and nonexistence results for quasilinear elliptic equations involving the p-Laplacian. Bollettino UMI, 2006, 8: 445- 484
4
Deng Y , Guo Z , Wang G . Nodal solutions for p-Laplace equations with critical growth. Nonlinear Anal, 2003, 54: 1121- 1151
doi: 10.1016/S0362-546X(03)00129-9
5
García Azorero J P , Peral Alonso I . Hardy inequalities and some critical elliptic and parabolic problems. J Differ Equa, 1998, 144: 441- 476
doi: 10.1006/jdeq.1997.3375
6
Kang D . Solutions of the quasilinear elliptic problem with a critical Sobolev-Hardy exponent and a Hardy-type term. J Math Anal Appl, 2008, 341: 764- 782
doi: 10.1016/j.jmaa.2007.10.058
7
Lions P L . The concentration-compactness principle in the calculus of variations:The limit case, Part 1. Rev Mat Iberoamericano, 1985, 1: 145- 201
8
Struwe M . Variational Methods. Berlin: Springer, 1996
9
Wang Z , Zhou H . Solutions for a nonhomogeneous elliptic problem involving critical Sobolev-Hardy exponent in ℝN. Acta Math Sci, 2006, 26
10
朱熹平. 临界增长拟线性椭圆型方程的非平凡解. 中国科学A辑, 1988, 3: 225- 237
Zhu X . Nontrivial solutions of quasilinear elliptic equations involving critical Sobolev exponent. Science China (Series A), 1988, 3: 225- 237