Acta mathematica scientia,Series A ›› 2018, Vol. 38 ›› Issue (4): 649-657.
Previous Articles Next Articles
Cao Jianbing
Received:
2017-02-21
Revised:
2017-10-29
Online:
2018-08-26
Published:
2018-08-26
Supported by:
CLC Number:
Cao Jianbing. Perturbation Analysis for Constrained Extremal Solution Problems in Reflexive Strictly Convex Banach Spaces[J].Acta mathematica scientia,Series A, 2018, 38(4): 649-657.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] | Cao J B, Xue Y F. On the simplest expression of the perturbed Moore-Penrose metric generalized inverse. Ann Univ Buchar Math, 2013, 4:1-14 |
[2] | Cao J B, Zhang W Q. Perturbation of the Moore-Penrose metric generalized inverse in reflexive strictly convex Banach spaces. Acta Math Sin, 2016, 32:725-735 |
[3] | Cao J B, Xue Y F. Perturbation analysis of the algebraic metric generalized inverse in Lp(Ω, μ). Numer Funct Anal Optim, 2017, 38:1624-1643 |
[4] | Chen G L, Xue Y F. Perturbation analysis for the operator equation T x=b in Banach spaces. J Math Anal Appl, 1997, 212:107-125 |
[5] | Chen G L, Wei Y M, Xue Y F. Perturbation analysis of the least square solution in Hilbert spaces. Linear Algebra Appl, 1996, 244:69-80 |
[6] | Ding J. Perturbation bounds for least squares problems with equality constraints. J Math Anal Appl, 1999, 229:631-638 |
[7] | Ding J. Lower and upper bounds in the perturbation of generallinear algebraic equations. Appl Math Lett, 2001, 20:49-52 |
[8] | Ding J. On the existence of solutions to equality constrained least-squares problems in infinite dimensional Hilbert spaces. Appl Math Comput, 2002, 131:573-581 |
[9] | Ding J. Lower and upper bounds in the perturbation of general linear algebraic equations. Appl Math Lett, 2004, 17:55-58 |
[10] | Ding J, Huang W. New perturbation results for equality constrained least squares problems. Linear Algebra Appl, 1998, 272:181-192 |
[11] | Du F P. Perturbation analysis for the Moore-Penrose metric generalized inverse of bounded linear operators. Banach J Math Anal, 2015, 9:100-114 |
[12] | Hudzik H, Y Wang Y W et al. Criteria for the metric generalized inverse and its selections in Banach spaces. Set-Valued Var Anal, 2008, 16:51-65 |
[13] | Kreyszig E. Introductory Functional Analysis with Applications. New York:Wiley, 1978 |
[14] | Liu P, Wang Y W. The best generalized inverse of the linear operator in normed linear space. Linear Algebra Appl, 2007, 420:9-19 |
[15] | Ma H F, Sun Sh et al. Perturbations of Moore-Penrose metric generalized inverses of linear operators in Banach spaces. Acta Math Sin, 2014, 30:1109-1124 |
[16] | Ma H F, Hudzik H et al. Continuous homogeneous selections of set-valued metric generalized inverses of linear operators in Banach spaces. Acta Math Sin, 2012, 28:45-56 |
[17] | Nashed M Z, Votruba G F. A unified approach to generalized inverses of linear operators:Ⅱ, Extremal and proximal properties. Bull Amer Math Soc, 1974, 80:831-835 |
[18] | Ni R X. Moore-Penrose metric generalized inverses of linear operators in arbitrary Banach spaces. Acta Math Sin, 2006, 49:1247-1252 |
[19] | Shang S, Cui Y A. Approximative compactness and continuity of the set-valued metric generalized inverse in Banach space. J Math App, 2015, 422:1363-1375 |
[20] | Singer I. The Theory of Best Approximation and Functional Analysis. New York:Springer-Verlag, 1970 |
[21] | Wang Y W, Wang Z. A new perturbation theorem for Moore-Penrose metric generalized inverse of bounded linear operators in Banach spaces. Acta Math Sci, 2017, 6:1619-1631 |
[22] | Wang Y W. Generalized Inverse of Operator in Banach Spaces and Applications. Beijing:Science Press, 2005 |
[23] | Wang Y W, Yu J F. The character and representive of a class of metric projection in Banach space. Acta Math Sci, 2001, 1:29-35 |
[24] | Wang Y W, Yu J F. The minimal norm extrimal solution to the non-homogeneous ill-posed boundary value problem in Banach Space Lp(Ω). Acta Math Sci, 2001, 2:191-200 |
[25] | Wang H, Wang Y W. Metric generalized inverse of linear operator in Banach space. Chin Ann Math, 2003, 24:509-520 |
[26] | Xue Y F. Stable Perturbations of Operators and Related Topics. Singapore:World Scientific, 2012 |
[1] | Lan Guijie, Fu Yingjie, Wei Chunjin, Zhang Shuwen. Stationary Distribution and Periodic Solution for Stochastic Predator-Prey Systems with Holling-Type Ⅲ Functional Response [J]. Acta mathematica scientia,Series A, 2018, 38(5): 984-1000. |
[2] | Liao Shupeng, Shen Jianhe. One-Pulse Travelling Front Solutions of a sine-Gordon Equation with Slowly Varying Parameters [J]. Acta mathematica scientia,Series A, 2018, 38(4): 810-822. |
[3] | Li Yudan, Wu Deyu, Alatancang. The Essential Spectra of Infinite Dimensional Hamilton Operator [J]. Acta mathematica scientia,Series A, 2018, 38(3): 476-483. |
[4] | Luo Liping, Luo Zhenguo, Deng Yihua. Effect of Impulsive Perturbations on Oscillation of Nonlinear Delay Hyperbolic Distributed Parameter Systems [J]. Acta mathematica scientia,Series A, 2018, 38(2): 313-321. |
[5] | Wang Wei, Zhu Yucan. Stability of Fusion Frame Systems under Perturbation of the Local Frame Vectors [J]. Acta mathematica scientia,Series A, 2017, 37(2): 228-238. |
[6] | Li Zejun, Sun Shuqin. Solvability of a Perturbed Variational Inequality [J]. Acta mathematica scientia,Series A, 2016, 36(3): 473-480. |
[7] | Zhang Shuwen. Dynamics of a Predator-Prey System with Impulsive Perturbations and Markovian Switching [J]. Acta mathematica scientia,Series A, 2016, 36(3): 569-583. |
[8] | Zhang Shuwen. A Stochastic Predator-Prey System with Time Delays and Prey Dispersal [J]. Acta mathematica scientia,Series A, 2015, 35(3): 592-603. |
[9] | Cui Miaomiao, Cao Xiaohong. Topological Uniform Descent and the Perturbation of Weyl's Theorem [J]. Acta mathematica scientia,Series A, 2015, 35(2): 324-331. |
[10] | SHANG De-Sheng, ZHANG Yao-Ming. Global Bifurcation of A Symmetric Cubic System [J]. Acta mathematica scientia,Series A, 2015, 35(1): 83-96. |
[11] | TIAN Jun-Hong, CAO Xiao-Hong, DAI Lei. The Stability of the Weyl Type Theorem [J]. Acta mathematica scientia,Series A, 2014, 34(6): 1500-1506. |
[12] | XU Jia, DAI Guo-Wei. Infinitely Many Critical Points of Perturbed Symmetric Functionals Involving p-Laplacian [J]. Acta mathematica scientia,Series A, 2014, 34(6): 1532-1541. |
[13] | WANG Sheng-Hua, JIA Shan-De, YUAN Deng-Bin. Spectral Analysis of a Transport Operators in Cell Population [J]. Acta mathematica scientia,Series A, 2014, 34(6): 1592-1598. |
[14] | Amir KHOSRAVI, Morteza MIRZAEE AZANDARYANI. APPROXIMATE DUALITY OF g-FRAMES IN HILBERT SPACES [J]. Acta mathematica scientia,Series A, 2014, 34(3): 639-652. |
[15] | LAN Yong-Yi, TANG Chun-Lei. PERTURBATION METHODS IN SEMILINEAR ELLIPTIC PROBLEMS INVOLVING CRITICAL HARDY-SOBOLEV EXPONENT [J]. Acta mathematica scientia,Series A, 2014, 34(3): 703-712. |
|