Acta mathematica scientia,Series A ›› 2017, Vol. 37 ›› Issue (6): 1085-1093.
Previous Articles Next Articles
Su Xiao1, Wang Shubin2
Received:
2016-11-19
Revised:
2017-05-12
Online:
2017-12-26
Published:
2017-12-26
Supported by:
CLC Number:
Su Xiao, Wang Shubin. Finite Time Blow-Up for the Damped Semilinear Wave Equations with Arbitrary Positive Initial Energy[J].Acta mathematica scientia,Series A, 2017, 37(6): 1085-1093.
[1] Ambroseti A, Rabinowitz P H. Dual variational methods in critical point theory and applications. J Funct Anal, 1973, 14:349-381 [2] Georgiev V, Todorova G. Existence of solutions of the wave equations with nonlinear damping and source terms. J Differ Equa 1994, 109 (2):295-308 [3] Gazzola F, Weth T. Finite time blow-up and global solutions for semilinear parabolic equations with initial data at high energy level. Differ Integral Equ, 2005, 18:961-990 [4] Gazzola F, Squassina M. Global solutions and finite time blow-up for damped semilinear wave equations. Ann I H Poincaré-AN, 2006, 23:185-207 [5] Gerbi S, Houari B S. Exponential decay for solutions to semilinear damped wave equation. Discrete Contin Dyn Syst Ser S, 2012, 5:559-566 [6] Ikehata R, Suzuki T. Stable and unstable sets for evolution equations of parabolic and hyperbolic type. Hiroshima Math J, 1996, 26:475-491 [7] Kutev N, Kolkovska N, Dimova M. Global existence of Caucy problem for Boussinesq paradigm equation. Computer Math Appli, 2013, 65:500-511 [8] Kutev N, Kolkovska N, Dimova M. Finite time blow up of the solutions to Boussinesq equation with linear restoring force and arbitrary positive energy. Acta Math Sci, 2016, 36:881-890 [9] Lions J L, Magenes E. Non-Homogeneous Boundary Value Problems and Applications I. New York:Springer-Verleag, 1972 [10] Liu Y. On potiential wells and vacuum isolating of solution for semilinear wave equations. J Differ Equa, 2003, 192:155-169 [11] Levine H A. Some additional remarks on the nonexistence of global solutions to nonlinear equations. SIAM J Math Anal, 1974, 5:138-146 [12] Levine H A. Instability and nonexistence of global solutions to nonlinear wave equations of the form Putt=-Au+f(u). Trans Amer Math Soc, 1974, 192:1-21 [13] Ohta M. Remarks on blow-up of solutions for nonlinear evolution equations of second order. Adv Math Sci Appl, 19988:901-910 [14] Payne L E, Sattinger D H. Sadle points and instability of nonlinear hyperbolic equations. Israel J Math, 1975, 22:273-303 [15] Sattinger D. On global solution of nonlinear hyperbolic equations. Arch Rat Mech Anal, 1968, 30:148-172 [16] Sun L, Guo B, Gao W. A lower bound for the blow-up time to a damped semilinear wave equation. Appl Math Lett, 2014, 37:22-25 [17] Su X, Wang S. The initial-boundary value problem for the generalized double dispersion equation. Z Angew Math Phys, 2017, 68:53 [18] Vitillaro E. Global nonexistence theorems for a class of evolution equations with dissipation. Arch Ration Mech Anal, 1999, 149 (2):155-182 [19] Wang S, Su X. Global existence and nonexistence of the initial-boundary value problem for the dissipative Boussinesq equation. Nonlinear Anal, 2016, 134:164-188 [20] Xu R, Su J. Global existence and finite time bow-up for a class of semilinear pseudo-parabolic equations. J Funct Anal, 2013, 264:2732-2763 [21] Xu R, Ding Y. Global solutions and finite time blow up for damped Klein-Gordon equation. Acta Math Sci, 2013, 33B(3):643-652 [22] Zhou J. Lower bounds for blow-up time of two nonlinear wave equations. Appl Math Lett, 2015, 45:64-68 |
[1] | Sun Baoyan. Lower Bound of Blow-Up Time for a p-Laplacian Equation with Nonlocal Source [J]. Acta mathematica scientia,Series A, 2018, 38(5): 911-923. |
[2] | Zhao Yuanzhang, Ma Xiangru. Blow-Up Analysis for a Nonlocal Reaction-Diffusion Equation with Variant Diffusion Coefficient [J]. Acta mathematica scientia,Series A, 2018, 38(4): 750-769. |
[3] | Liu Dengming, Zeng Xianzhong, Mu Chunlai. A Blow-up Result for a Higher-Order Damped Hyperbolic System with Nonlinear Memory Terms [J]. Acta mathematica scientia,Series A, 2018, 38(2): 304-312. |
[4] | Qiu Hua, Zhang Yingshu, Fang Shaomei. The Global Existence Result of a Leray-α-Oldroyd Model to the Incompressible Viscoelastic Flow [J]. Acta mathematica scientia,Series A, 2017, 37(1): 102-112. |
[5] | Ma Lingwei, Fang Zhongbo. Lower Bounds of Blow-up Time for a Reaction-Diffusion Equation with Weighted Nonlocal Sources and Robin Type Boundary Conditions [J]. Acta mathematica scientia,Series A, 2017, 37(1): 146-157. |
[6] | Yang Lingyan, Li Xiaoguang, Chen Ying. A Sharp Threshold of Blow-Up of a Class of Schrödinger-Hartree Equations [J]. Acta mathematica scientia,Series A, 2016, 36(6): 1117-1123. |
[7] | Liu Yang. Potential Well and Application to Non-Newtonian Filtration Equations at Critical Initial Energy Level [J]. Acta mathematica scientia,Series A, 2016, 36(6): 1211-1220. |
[8] | Ling Zhengqiu, Wang Zejia. Blow-Up Questions of Solutions to a Class of p-Laplace Equation with Dissipative Gradient Term [J]. Acta mathematica scientia,Series A, 2016, 36(5): 958-964. |
[9] | Huang Shoujun, Wang Rui. Plane Wave Solutions to the Euler Equations for Chaplygin Gases [J]. Acta mathematica scientia,Series A, 2016, 36(4): 681-689. |
[10] | Bian Dongfen, Tang Tong. Blow-Up of Smooth Solutions to the Compressible MHD Equations [J]. Acta mathematica scientia,Series A, 2016, 36(4): 715-721. |
[11] | Di Huafei, Shang Yadong. Global Existence and Nonexistence of Solutions for A Class of Fourth Order Wave Equation with Nonlinear Damping and Source Terms [J]. Acta mathematica scientia,Series A, 2015, 35(3): 618-633. |
[12] | Ling Zhengqiu, Qin Siqian. Coupled Semilinear Parabolic System with Nonlinear Nonlocal Boundary Condition [J]. Acta mathematica scientia,Series A, 2015, 35(2): 234-244. |
[13] | Wang Hua, He Yijun. Blow-up of Solutions for a Semilinear Hyperbolic Equation with Variable Exponent and Positive Energy [J]. Acta mathematica scientia,Series A, 2015, 35(2): 288-293. |
[14] | LING Zheng-Qiu, QIN Sai-Qan. Blow-up and Global Boundedness for a Degenerate Parabolic System with Positive Boundary Value Condition [J]. Acta mathematica scientia,Series A, 2014, 34(5): 1061-1070. |
[15] | SHEN Ji-Hong, ZHANG Ming-You, YANG Yan-Bing, LIU Bo-Wei, XU Run-Zhang. Global Well-posedness of Cauchy Problem for Damped Multidimensional Generalized Boussinesq Equations [J]. Acta mathematica scientia,Series A, 2014, 34(5): 1173-1187. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 93
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 105
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||||||
Discussed |
|