[1] Ablowitz M J, Ladik J F. Nonlinear differential-deference equation. J Math Phys, 1975, 16:598-603 [2] Guizhang T. A trace identity and its applications to the theory of discrete integrable systems. J Phys A:Math Gen, 1990, 23:3903-3922 [3] Ma W X, Xu X X. Positive and negative hierarchies of integrable lattice models associated with a Hamiltonian pair. Inte J Theo Phys, 2004, 43:219-236 [4] Ma W X, Xu X X. A modified Toda spectral problem and its hierarchy of bi-Hamiltonian lattice. J Phys A:Math Gen, 2004, 37:1323-1336 [5] Xu X X, Zhang Y F. A hierarchy of Lax integrable lattice equations, Liouville integrability and a new integrable symplistic map. Comm Theor Phys, 2004, 41:321-328 [6] Wu Y T, Geng X G. A new integrable symplectic map associated with lattice soliton equations. J Math Phys, 1996, 37:2338-2345 [7] Cao C W, Geng X G, Wu Y T. From the special 2+1 Toda lattice to the Kadomtsev-Petvashvili eqution. J Phys A:Math Gen, 1999, 32:8059-8078 [8] Cao C W. Nonlinearization of the Lax system for AKNS hierarchy. Sci China Ser A, 1990, 33:528-536 [9] Cao C W, Geng X G. Classical Integrable Systems Generated Through Nonlinearization of Eigenvalue Problems//Gu C H, Li Y S, Tu G Z. Nonli Phys. Berlin:Spring-Verlag, 1990:68-78 [10] Ma W X, Strmpp W. An explicit symmetry constraint for the Lax pairs and the adjoint Lax pairs of AKNS systems. Phys Lett A, 1994, 185:277-286 [11] Ma W X, Geng X G. Bäcklund transformations of soliton systems from symmetry constraints. 2001, arXiv:nlin/010707101 [12] Xu X X. A generalized Wadati-Konno-Ichikawa hierarchy and its symmetry constraint by binary nonlinearization. Chaos, Soliton and Fractals, 2003, 15:475-486 [13] Zeng Y B, Li Y S. New symplectic maps:integrability and Lax representation. Chin Ann of Math, 1997, 18B:457-466 [14] Bruschi M, Ragnisco O, Santini P M, Guizhang T. Integrable sympiectic maps. Physica D, 1991, 49:273-294 [15] Zhang N, Dong H H. NLS-MKdV hierarchy and its Hamiltonian structures. Internat J Theoret Phys, 2008, 47:1221-1229 [16] Dong H H, Wang X R. A new 4-dimensional implicit vector-form loop algebra with arbitrary constants and the corresponding computing formula of constant. Appl Math and Compu, 2012, 22:10998-11008 [17] Zhang N, Xia T C. A hierarchy of lattice soliton equations associated with a new discrete eigenvalue problem and Darboux transformations. International Journal of Nonlinear Sciences and Numerical Simulation (IJNSNS), 2015, 16(7/8):301-306 [18] Ma W X. Binary Bargmann symmetry constraints of soliton equations. Proceedings of the Third World Congress of Nonlinear Analysts Nonlinear Anal, 2001, 47:5199-5211 [19] Ma W X, Zhou Z X. Binary symmetry constraints of N-wave interaction equations in 1+1 and 2+1 dimensions. J Math Phys, 2001, 42:4345-4382 |